In the present paer, a thermal study was conducted for the grinding of granite with diamond tools. Three types of grinding-straight surface grinding, deep grinding(circular sawing), and vertical spindle grinding-were ...In the present paer, a thermal study was conducted for the grinding of granite with diamond tools. Three types of grinding-straight surface grinding, deep grinding(circular sawing), and vertical spindle grinding-were studied. Some surface grinding tests were also conducted using a CBN(cubic boron nitride) wheel. Temperature distributions on the workpiece surface were measured using a foil thermocouple and the energy partition to the workpiece was estimated using a temperature matching method. The temperature for CBN surface grinding was found to be much higher than for diamond grinding. Energy partitions to the granite were 30%~36% for CBN surface grinding, 25%~32% for diamond surface grinding, about 53% for vertical spindle grinding, and 5.5%~9% for diamond deep grinding. The low energy partition value in deep grinding also suggested that more of the heat generated by grinding in this case can be conducted to the grinding tool and promote tool wear.展开更多
There is less research on vertical sculptured grinding technology. Especially in high vertical surface grinding process with the cup abrasive wheel, the thermal damage is prone to happen and undermine the grinding sur...There is less research on vertical sculptured grinding technology. Especially in high vertical surface grinding process with the cup abrasive wheel, the thermal damage is prone to happen and undermine the grinding surface integrity. This problem limits to improve the grinding efficiency and the grinding ratio greatly. Through the analysis of vertical surface grinding process and features in depth, this paper revealed the inherent mechanism of higher grinding temperature in the process of vertical sculptured grinding using the cup wheel. Based on the previous research achievements, the grinding experiments on TC4 (Ti-6A1-4V) and GH4169 are carried out utilizing the self-inhaling internal cooling wheel. The experimental results show that the self-inhaling internal cooling wheel can efficiently reduce the grinding surface temperature. Moreover, the inherent mechanism of reducing the grinding temperature using the internal cooling method is revealed. Meanwhile, under the same grinding conditions, the grinding ratio during the experiments on GH4169 using self-inhaling internal cooling method is about 3 times as high as using conventional external cooling method. And the grinding forces can be reduced by about 20%. This research revealed the inherent mechanism of higher grinding temperature in the process of vertical sculptured grinding using the cup wheel, which provides theoretical basis for the design and application of self-inhaling internal cooling wheel. At the same time, an efficient and non-invasive surface grinding method of TC4 and GH4169 is presented.展开更多
In order to grind the ceramic blade surface with the Numerical Control contour evolution ultrasonic grinding method using the simple shape grinding wheel, primary comparative experiments of creep feed grinding with an...In order to grind the ceramic blade surface with the Numerical Control contour evolution ultrasonic grinding method using the simple shape grinding wheel, primary comparative experiments of creep feed grinding with and without ultrasonic vibration were carried out to grind Al2O3 ceramics so as to implore the effects of different process parameters on the machined surface quality. It can be concluded that when the direction of ultrasonic vibration is parallel to the direction of creep feed, the value of the surface roughness will be decreased; otherwise the surface quality will become worse. With the ultrasonic grinding method, the slower feed-rate, the smaller grinding depth, the higher grinding speed and the compound feed grinding method should be applied in order to improve the surface quality. The creep feed grinding meehanisms with and without ultrasonic vibration were analyzed theoretically from the experimental results. With the selected grinding parameters resulted from the experiments, the feasibility experiment of ultrasonic grinding ceramic blade surface was cartied out.展开更多
The purpose of this study is to investigate the effect of graphite lubricant on the dry grinding performance of Ti-6Al-4Valloy,using graphite-coated,brazed monolayer,cubic boron nitride(cBN)wheels.Brazed monolayer cBN...The purpose of this study is to investigate the effect of graphite lubricant on the dry grinding performance of Ti-6Al-4Valloy,using graphite-coated,brazed monolayer,cubic boron nitride(cBN)wheels.Brazed monolayer cBN wheels both with and without a coating of polymer-based graphite lubricant are fabricated and subsequently compared for grinding performance based on measurements of grinding temperature,surface microstructure and grinding.In terms of grinding temperature,considerable improvement in dry grinding performance of titanium alloy is achieved using coated brazed monolayer cBN wheels,with 42%—47%reduction in grinding temperature as opposed to uncoated wheels.The grinding force ratio with the coated wheels is observed to remain between 1.45to1.85despite material removal rates reaching up to 1 950mm3/mm.No tangible change in ground titanium surface microstructure is noted as a result of grinding with the graphite coated wheels as opposed to the uncoated ones.展开更多
The depth and nature of the subsurface damage in a silicon wafer will limit the performance of IC components. Damage microstructures of the silicon wafers ground by the #325, #600, and #2000 grinding wheels was analyz...The depth and nature of the subsurface damage in a silicon wafer will limit the performance of IC components. Damage microstructures of the silicon wafers ground by the #325, #600, and #2000 grinding wheels was analyzed. The results show that many microcracks, fractures, and dislocation rosettes appear in the surface and subsurface of the wafer ground by the #325 grinding wheel. No obvious microstructure change exists. The amorphous layer with a thickness of about 100 nm, microcracks, high density dislocations, and polycrystalline silicon are observed in the subsurface of the wafer ground by the #600 grinding wheel. For the wafer ground by the #2000 grinding wheel, an amorphous layer of about 30 nm thickness, a polycrystalline silicon layer, a few dislocations, and an elastic deformation layer exist. In general, with the decrease in grit size, the material removal mode changes from micro-fracture mode to ductile mode gradually.展开更多
Grinding burn monitoring is of great importance to guarantee the surface integrity of the workpiece. Existing methods monitor overall signal variation. However, the signals produced by metal burn are always weak. Ther...Grinding burn monitoring is of great importance to guarantee the surface integrity of the workpiece. Existing methods monitor overall signal variation. However, the signals produced by metal burn are always weak. Therefore, the detection rate of grinding burn still needs to be improved. The paper presents a novel grinding burn detection method basing on acoustic emission(AE) signals. It is achieved by establishing the coherence relationship of pure metal burn and grinding burn signals. Firstly, laser and grinding experiments were carried out to produce pure metal burn signals and grinding burn signals. No-burn and burn surfaces were generated and AE signals were captured separately. Then, the cross wavelet transform(XWT) and wavelet coherence(WTC) were applied to reveal the coherence relationship of the pure metal burn signal and grinding burn signal. The methods can reduce unwanted AE sources and background noise. Novel parameters based on XWT and WTC are proposed to quantify the degree of coherence and monitor the grinding burn. The grinding burn signals were recognized successfully by the proposed indexes under same grinding condition.展开更多
Air barrier of grinding means a boundary layer of air existing at the circumference of the rotating wheel,which hinders coolant from entry. This paper makes a research on air flow field of the grinding zone through ex...Air barrier of grinding means a boundary layer of air existing at the circumference of the rotating wheel,which hinders coolant from entry. This paper makes a research on air flow field of the grinding zone through experiments and numerical simulations,focusing on acquainting with the specific properties of the air flow field. Finite volume method is applied to analyze air flow field within grinding wheel in the course of numerical calculations. The test devices such as Hot-wire anemometer and Betz manometer are used during the experiments of testing the pressure and velocity within grinding zone. Results of experiments agree by and large with numerical results of calculations. The conclusions obtained in this paper,the distribution of wall pressure and the distribution of air flow velocity,are important and useful to navigate the delivery of coolant into the grinding zone. In conclusion,some recommendations are made for further study and practical applications in such field.展开更多
The regrinding error is the main factor affecting the eligible length of hob tooth,how to decrease the regrinding error is a hot issue in the research area of hob grinding.At present,researches focus on changing the t...The regrinding error is the main factor affecting the eligible length of hob tooth,how to decrease the regrinding error is a hot issue in the research area of hob grinding.At present,researches focus on changing the trajectory of relief moving,because of no unified relief grinding path planning method,the research result is restricted in the practical application.For solving the problem,the calculation model of the hob relief angle is established with the Archimedes relieving motion to analyze the interaction between the increasing relief angle of the hob and the accelerating tooth profile errors.Based on it,the improved relief grinding method of gear hob is proposed with equal relief angle(ERA).Furthermore,the relief grinding method with ERA is developed with the following two steps.Firstly,the convergence numerical solution algorithm of the tooth top curve is designed to form the wheel motion path which is compared with that of traditional grinding.The second step is to establish the solution model of ERA grinding wheel.In order to verify the effect of the method,hob grinding simulation system of 3D solid was built under the AutoCAD environment.The regrinding errors is analyzed by intercepting the hob axial profiles of the various regrinding angles with Boolean operations and further converting it to basic rack tooth,then the simulation example of zero rake straight flute hob is used to compare the regrinding errors between ERA grinding and traditional grinding.Finally,the experiments were implemented on the five-axis CNC relief grinder with the relief motion of ERA grinding driven by cam.The results of experiments show that the method can effectively reduce the regrinding errors of hob and grind expediently gear hob of AA rank and over.This research provide an effective model of relief moving path plan reducing regrinding error,and have practicable value in CNC relief grinder.展开更多
Hard and brittle materials such as ferrite, optical glass and ceramics have been widely used in many fields because of their good characteristics and still gain more attentions. However, it is difficult to machine and...Hard and brittle materials such as ferrite, optical glass and ceramics have been widely used in many fields because of their good characteristics and still gain more attentions. However, it is difficult to machine and get good surface quality. Some parts made of these materials have large machining allowances and need to be produced with large batch, but the machining efficiency is very low with usual grinding method. So it is of great importance to research the high efficiency grinding technology of hard and brittle materials. Electrolytic in-process dressing (ELID) grinding is a new grinding technology which has been adopted to the ultra-precision machining of hard and brittle materials. With the function of in-process dressing of metal bond diamond and CBN wheel, ELID grinding has the ability to keep the sharpness of the wheel surface and is widely used in fine abrasive grinding, but it also has the potentialities to high efficiency grinding. In this paper, the mechanism of ELID grinding and its grinding performance are analyzed, then the cast iron bond diamond wheels and ELID grinding device are used on a surface grinder to research the feasibility of ELID grinding to high efficiency grinding. To make comparison, the garnet ferrite (YAG) work piece has been machined in plunge grinding both by ELID grinding and by the resin bond diamond wheel. The grinding force and surface quality are tested and analyzed. It has been found that the grinding force of the cast iron bond diamond wheel with ELID grinding is apparently smaller than that of the resin bond diamond wheel. Under the same conditions, it is about 2/5~3/5 as the force using the resin bond diamond wheel. So with the same grinder and machining conditions, ELID grinding can machine work piece with greater depth of cut. Because of the smaller grinding force, it is also beneficial to avoid the edge collapse of the work piece and keep the integrity of the grinding surface. This experiment shows that the grinding efficiency can be highly improved and the surface quality be ensured by applying ELID grinding technology and adopting large grinding depth. The results indicate that the ELID grinding technology can be effectively used in the high efficiency machining of garnet ferrite and other hard and brittle materials.展开更多
The effect of grinding on the chemical and physical properties of rice husk ash was studied. Four rice husk ashes with different finenesses, i.e. coarse original rice husk ash (RHA0), RHA1, RHA2, and RHA3 were used ...The effect of grinding on the chemical and physical properties of rice husk ash was studied. Four rice husk ashes with different finenesses, i.e. coarse original rice husk ash (RHA0), RHA1, RHA2, and RHA3 were used for the study. Ordinary Portland cement (OPC) was partially replaced with rice husk ash at 20% by weight of binder. The water to binder ratio (W/B) of the mortar was maintained at 110%±5% with flow table test. Specific gravity, fineness, chemical properties, compressive strength, and porosity test of mortars were determined. The differences in chemical composition of the rice husk ashes with different finenesses from the same batch are small. The use of RHA3 produces the mortars with good strength and low porosity. The strength of the mortar improves with partial replacement of RHA3 in comparison with normal coarse rice husk ash. The use of RHA3 results in a strong and dense mortar, which is due to the better dispersion and filling effect, as well as an increase in the pozzolanic reaction.展开更多
Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the...Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton's iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding.展开更多
An experimental study was carried out to investigat e the influence of temperatures on workpiece surface integrity in surface grinding of a cast nickel-based superalloy with alumina abrasive wheels. Temperatur e respo...An experimental study was carried out to investigat e the influence of temperatures on workpiece surface integrity in surface grinding of a cast nickel-based superalloy with alumina abrasive wheels. Temperatur e response at the wheel-workpiece interface was measured using a grindable foil /workpiece thermocouple. Specimens with different grinding temperatures were obt ained through changing grinding conditions including depth of cut, workpiece fee d speed, and coolant supply. Changes in surface roughness, residual stress, meta llographies, ground surface morphology, and micro hardness on the specimens were then analyzed. Bending fatigue tests were separately conducted at room temperat ure and 950oC in an effort to evaluate the influence of temperatures on the serv ice life of the ground specimens. A different burning color was found on the gro und workpiece surfaces when grinding temperatures are over a critical value. Alo ng with the emergence of burning color, roughness of the ground workpiece surfac e increased greatly compared with the surfaces without burning color, which was attributed to the plastically deformed coatings on the workpiece surface with el evated temperatures. Excepting the surface roughness, other items concerning the surface integrity of the ground workpiece were not affected by temperatures pro vided that grinding temperatures are not high enough to cause grinding cracks. B ased on the findings in this study, the grinding of the nickel-based superalloy can be divided into two stages in order to increase production efficiency, in which case the first stage is to reach an high material removal rate without concerning of the presence of burning color, whereas the second stage is to remo ve the plastically deformed coatings in order to decrease surface roughness.展开更多
The non-grinding long afterglow material SrAl2O4:Eu^2+ , Dy^3+ was prepared by combustion method in home mierowave oven direetly, after dispersant, frother, eomburent, and mineralizer were added into the reacting s...The non-grinding long afterglow material SrAl2O4:Eu^2+ , Dy^3+ was prepared by combustion method in home mierowave oven direetly, after dispersant, frother, eomburent, and mineralizer were added into the reacting system. XRD analysis showed that the powders were nearly pure SrAl2O4 phase with few other phases, and the size of the grain was 41.1 nm. Fluoreseenee speetrum results indieated that there were 2 exeitation peaks loeated at 345 and 400 nm, and the emission peak loeated at 516 nm, afterglow lasted up to 30 min or more. The mierowave eombustion method has advantages of less time, low temperature and no grinding process, and the material made by the method has good luminescent property.展开更多
The effect of microwave treatment on the grinding and dissociation characteristics of vanadium titano-magnetite(VTM) ore were investigated using scanning electron microscopy(SEM), nitrogen absorption measurements, par...The effect of microwave treatment on the grinding and dissociation characteristics of vanadium titano-magnetite(VTM) ore were investigated using scanning electron microscopy(SEM), nitrogen absorption measurements, particle size distribution measurements, X-ray diffraction(XRD) analysis, Fourier transform infrared(FT-IR) spectroscopic analysis, and magnetic separation. SEM analysis showed that microfractures appeared in the microwave-treated VTM, which is attributed to the microwaves' selective heating characteristic and the differential expansion between minerals and gangues. Nitrogen absorption showed that the microfractures were more pronounced when the microwave heating time was increased. Particle size distribution analysis showed that microwave treatment could improve the grindability of the VTM, thus increasing the weight percent of the fine-ground product. The increase in grindability was more significant with prolonged heating time. Moreover, the particle size distribution of the fine-ground product changed only slightly after the microwave treatment. XRD analysis showed that the crystallinity of the microwave-treated VTM increased with increasing microwave heating time. The magnetic separation tests revealed that the separation efficiency increased as a result of the intergranular fractures generated by microwave treatment. The Fe grade of the magnetic fraction of microwave-treated VTM was 1.72% higher than that of the raw ore. We concluded that the microwave treatment was beneficial, especially for the mineral processing characteristics.展开更多
The low-energy, multi-impact fracture resistance and the abrasiveness of the cross-rolled low alloy white cast iron grinding balls were studied after heat treatments at residual rolling temperature. Moreover, the mean...The low-energy, multi-impact fracture resistance and the abrasiveness of the cross-rolled low alloy white cast iron grinding balls were studied after heat treatments at residual rolling temperature. Moreover, the means by which they are damaged and characters of the wear surface were analyzed. The results show that high resistance to impact fracture and high abrasiveness can be achieved after appropriate heat treatment at residual rolling temperature. This kind of heat treatment technology has several advantages under low impact and hard abrasive. These results are very useful for determining the optimized heat treatment technology at residual rolling temperatures.展开更多
In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond...In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond compacts (PDCs) by using the new vitrified bond diamond grinding wheel was discussed. Several factors which influence the properties of grinding wheel such as amount of vitrified bond and the kinds and amount of stuff in grinding wheel were also investigated. It was found that the new vitrified bond can firmly combine diamond grains, when there are only diamonds and vitrified bond in the structure of grinding wheel, the longevity of the grinding wheel is about 2.5-3 times as that of resin bond grinding wheel for processing PDCs. The grinding size precision of PDCs can be improved from 4-0.03 mm to 4-0.01 mm because of larger Young's modulus of vitrified bond than resin bond. The grinding time of a PDC product can be 1.75-2.0 min from 3.25-3.5 min, so this kind of grinding wheel can save much time for processing PDCs. Also, there is hardly noise when using this new vitrified bond diamond grinding wheel to process PDCs. The amount of vitrified bond in grinding wheel influences the longevity of grinding wheel. When the size of diamond grains is 90-107 μm, the optimal amount of vitrified bond in grinding wheel is 21% (wt pct). When the amount of vitrified bond exceeds 21%, there are many pores in grinding block, which will decrease the longevity of grinding wheel. The existence of addition stuff such as Al2O3 or SiC can reduce the longevity of grinding wheel.展开更多
In order to resolve the problems of machining non-axisymmetric aspheric lens,which is short of flexibility in mould grinding and needs high accuracy CNC machine center in globediamond wheel grinding, a new parallel gr...In order to resolve the problems of machining non-axisymmetric aspheric lens,which is short of flexibility in mould grinding and needs high accuracy CNC machine center in globediamond wheel grinding, a new parallel grinding method that utilizes common arc diamond wheel isput forward. Base on the approach calculation of machining locus, the advantages of parallelgrinding that machines non-axisymmetric aspheric lens by 2.5-axis CNC machine center have beenobtained. The results of grinding experiment show the new method can meet the need of grinding highaccuracy non-axisymmetric aspheric lens.展开更多
To study the effect of the textural properties of rocks on their crushing feature, the distribution of particle size, the texture, grinding and crushing characteristics of the rocks were investigated, and the relation...To study the effect of the textural properties of rocks on their crushing feature, the distribution of particle size, the texture, grinding and crushing characteristics of the rocks were investigated, and the relations among them were then analyzed using statistical methods. The relations between the textural properties and the physical and mechanical features of rocks were determined.展开更多
Condition monitoring is a very important aspect in automated manufacturing processes. Any malfunction of a machining process will deteriorate production quality and efficiency. This paper presents an application of su...Condition monitoring is a very important aspect in automated manufacturing processes. Any malfunction of a machining process will deteriorate production quality and efficiency. This paper presents an application of support vector machines in grinding process monitoring. The paper starts with an overview of grinding behaviour. Grinding force is analysed through a Short Time Fourier Transform (STFT) to identify features for condition monitoring. The Support Vector Machine (SVM) methodology is introduced as a powerful tool for the classification of different wheel wear situations. After training with available signal data, the SVM is able to identify the state of a grinding process. The requirement and strategy for using SVM for grinding process monitoring is discussed, while the result of the example illustrates how effective SVMs can be in determining wheel redress-life.展开更多
文摘In the present paer, a thermal study was conducted for the grinding of granite with diamond tools. Three types of grinding-straight surface grinding, deep grinding(circular sawing), and vertical spindle grinding-were studied. Some surface grinding tests were also conducted using a CBN(cubic boron nitride) wheel. Temperature distributions on the workpiece surface were measured using a foil thermocouple and the energy partition to the workpiece was estimated using a temperature matching method. The temperature for CBN surface grinding was found to be much higher than for diamond grinding. Energy partitions to the granite were 30%~36% for CBN surface grinding, 25%~32% for diamond surface grinding, about 53% for vertical spindle grinding, and 5.5%~9% for diamond deep grinding. The low energy partition value in deep grinding also suggested that more of the heat generated by grinding in this case can be conducted to the grinding tool and promote tool wear.
基金supported by National Natural Science Foundation of China(Grant No.51105024)
文摘There is less research on vertical sculptured grinding technology. Especially in high vertical surface grinding process with the cup abrasive wheel, the thermal damage is prone to happen and undermine the grinding surface integrity. This problem limits to improve the grinding efficiency and the grinding ratio greatly. Through the analysis of vertical surface grinding process and features in depth, this paper revealed the inherent mechanism of higher grinding temperature in the process of vertical sculptured grinding using the cup wheel. Based on the previous research achievements, the grinding experiments on TC4 (Ti-6A1-4V) and GH4169 are carried out utilizing the self-inhaling internal cooling wheel. The experimental results show that the self-inhaling internal cooling wheel can efficiently reduce the grinding surface temperature. Moreover, the inherent mechanism of reducing the grinding temperature using the internal cooling method is revealed. Meanwhile, under the same grinding conditions, the grinding ratio during the experiments on GH4169 using self-inhaling internal cooling method is about 3 times as high as using conventional external cooling method. And the grinding forces can be reduced by about 20%. This research revealed the inherent mechanism of higher grinding temperature in the process of vertical sculptured grinding using the cup wheel, which provides theoretical basis for the design and application of self-inhaling internal cooling wheel. At the same time, an efficient and non-invasive surface grinding method of TC4 and GH4169 is presented.
基金Jiangsu Natural Science Fund of China (BK2001048)
文摘In order to grind the ceramic blade surface with the Numerical Control contour evolution ultrasonic grinding method using the simple shape grinding wheel, primary comparative experiments of creep feed grinding with and without ultrasonic vibration were carried out to grind Al2O3 ceramics so as to implore the effects of different process parameters on the machined surface quality. It can be concluded that when the direction of ultrasonic vibration is parallel to the direction of creep feed, the value of the surface roughness will be decreased; otherwise the surface quality will become worse. With the ultrasonic grinding method, the slower feed-rate, the smaller grinding depth, the higher grinding speed and the compound feed grinding method should be applied in order to improve the surface quality. The creep feed grinding meehanisms with and without ultrasonic vibration were analyzed theoretically from the experimental results. With the selected grinding parameters resulted from the experiments, the feasibility experiment of ultrasonic grinding ceramic blade surface was cartied out.
基金Supported by the State Major Science and Technology Special Projects(2010ZX04003081-03)
文摘The purpose of this study is to investigate the effect of graphite lubricant on the dry grinding performance of Ti-6Al-4Valloy,using graphite-coated,brazed monolayer,cubic boron nitride(cBN)wheels.Brazed monolayer cBN wheels both with and without a coating of polymer-based graphite lubricant are fabricated and subsequently compared for grinding performance based on measurements of grinding temperature,surface microstructure and grinding.In terms of grinding temperature,considerable improvement in dry grinding performance of titanium alloy is achieved using coated brazed monolayer cBN wheels,with 42%—47%reduction in grinding temperature as opposed to uncoated wheels.The grinding force ratio with the coated wheels is observed to remain between 1.45to1.85despite material removal rates reaching up to 1 950mm3/mm.No tangible change in ground titanium surface microstructure is noted as a result of grinding with the graphite coated wheels as opposed to the uncoated ones.
基金This study was financially supported by the National Natural Science Foundation of China in Major Project Program (No. 50390061)the National Science Fund for Distinguished Young Scholars (No. 50325518).
文摘The depth and nature of the subsurface damage in a silicon wafer will limit the performance of IC components. Damage microstructures of the silicon wafers ground by the #325, #600, and #2000 grinding wheels was analyzed. The results show that many microcracks, fractures, and dislocation rosettes appear in the surface and subsurface of the wafer ground by the #325 grinding wheel. No obvious microstructure change exists. The amorphous layer with a thickness of about 100 nm, microcracks, high density dislocations, and polycrystalline silicon are observed in the subsurface of the wafer ground by the #600 grinding wheel. For the wafer ground by the #2000 grinding wheel, an amorphous layer of about 30 nm thickness, a polycrystalline silicon layer, a few dislocations, and an elastic deformation layer exist. In general, with the decrease in grit size, the material removal mode changes from micro-fracture mode to ductile mode gradually.
基金Supported by National Natural Science Foundation of China(Grant No.51421004)Fundamental Research Funds of the Central Universities of China(Grant No.CXTD2014001)
文摘Grinding burn monitoring is of great importance to guarantee the surface integrity of the workpiece. Existing methods monitor overall signal variation. However, the signals produced by metal burn are always weak. Therefore, the detection rate of grinding burn still needs to be improved. The paper presents a novel grinding burn detection method basing on acoustic emission(AE) signals. It is achieved by establishing the coherence relationship of pure metal burn and grinding burn signals. Firstly, laser and grinding experiments were carried out to produce pure metal burn signals and grinding burn signals. No-burn and burn surfaces were generated and AE signals were captured separately. Then, the cross wavelet transform(XWT) and wavelet coherence(WTC) were applied to reveal the coherence relationship of the pure metal burn signal and grinding burn signal. The methods can reduce unwanted AE sources and background noise. Novel parameters based on XWT and WTC are proposed to quantify the degree of coherence and monitor the grinding burn. The grinding burn signals were recognized successfully by the proposed indexes under same grinding condition.
文摘Air barrier of grinding means a boundary layer of air existing at the circumference of the rotating wheel,which hinders coolant from entry. This paper makes a research on air flow field of the grinding zone through experiments and numerical simulations,focusing on acquainting with the specific properties of the air flow field. Finite volume method is applied to analyze air flow field within grinding wheel in the course of numerical calculations. The test devices such as Hot-wire anemometer and Betz manometer are used during the experiments of testing the pressure and velocity within grinding zone. Results of experiments agree by and large with numerical results of calculations. The conclusions obtained in this paper,the distribution of wall pressure and the distribution of air flow velocity,are important and useful to navigate the delivery of coolant into the grinding zone. In conclusion,some recommendations are made for further study and practical applications in such field.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. CDJZR10110025)
文摘The regrinding error is the main factor affecting the eligible length of hob tooth,how to decrease the regrinding error is a hot issue in the research area of hob grinding.At present,researches focus on changing the trajectory of relief moving,because of no unified relief grinding path planning method,the research result is restricted in the practical application.For solving the problem,the calculation model of the hob relief angle is established with the Archimedes relieving motion to analyze the interaction between the increasing relief angle of the hob and the accelerating tooth profile errors.Based on it,the improved relief grinding method of gear hob is proposed with equal relief angle(ERA).Furthermore,the relief grinding method with ERA is developed with the following two steps.Firstly,the convergence numerical solution algorithm of the tooth top curve is designed to form the wheel motion path which is compared with that of traditional grinding.The second step is to establish the solution model of ERA grinding wheel.In order to verify the effect of the method,hob grinding simulation system of 3D solid was built under the AutoCAD environment.The regrinding errors is analyzed by intercepting the hob axial profiles of the various regrinding angles with Boolean operations and further converting it to basic rack tooth,then the simulation example of zero rake straight flute hob is used to compare the regrinding errors between ERA grinding and traditional grinding.Finally,the experiments were implemented on the five-axis CNC relief grinder with the relief motion of ERA grinding driven by cam.The results of experiments show that the method can effectively reduce the regrinding errors of hob and grind expediently gear hob of AA rank and over.This research provide an effective model of relief moving path plan reducing regrinding error,and have practicable value in CNC relief grinder.
文摘Hard and brittle materials such as ferrite, optical glass and ceramics have been widely used in many fields because of their good characteristics and still gain more attentions. However, it is difficult to machine and get good surface quality. Some parts made of these materials have large machining allowances and need to be produced with large batch, but the machining efficiency is very low with usual grinding method. So it is of great importance to research the high efficiency grinding technology of hard and brittle materials. Electrolytic in-process dressing (ELID) grinding is a new grinding technology which has been adopted to the ultra-precision machining of hard and brittle materials. With the function of in-process dressing of metal bond diamond and CBN wheel, ELID grinding has the ability to keep the sharpness of the wheel surface and is widely used in fine abrasive grinding, but it also has the potentialities to high efficiency grinding. In this paper, the mechanism of ELID grinding and its grinding performance are analyzed, then the cast iron bond diamond wheels and ELID grinding device are used on a surface grinder to research the feasibility of ELID grinding to high efficiency grinding. To make comparison, the garnet ferrite (YAG) work piece has been machined in plunge grinding both by ELID grinding and by the resin bond diamond wheel. The grinding force and surface quality are tested and analyzed. It has been found that the grinding force of the cast iron bond diamond wheel with ELID grinding is apparently smaller than that of the resin bond diamond wheel. Under the same conditions, it is about 2/5~3/5 as the force using the resin bond diamond wheel. So with the same grinder and machining conditions, ELID grinding can machine work piece with greater depth of cut. Because of the smaller grinding force, it is also beneficial to avoid the edge collapse of the work piece and keep the integrity of the grinding surface. This experiment shows that the grinding efficiency can be highly improved and the surface quality be ensured by applying ELID grinding technology and adopting large grinding depth. The results indicate that the ELID grinding technology can be effectively used in the high efficiency machining of garnet ferrite and other hard and brittle materials.
基金the Commission on Higher Education (MUA) of Thailandthe Sustainable Infrastructure Research and Development Center of Khon Kaen University (SIRDC)Department of Civil Engineering of Rajamangala University of Technology Phra Nakhon (RMUTP)
文摘The effect of grinding on the chemical and physical properties of rice husk ash was studied. Four rice husk ashes with different finenesses, i.e. coarse original rice husk ash (RHA0), RHA1, RHA2, and RHA3 were used for the study. Ordinary Portland cement (OPC) was partially replaced with rice husk ash at 20% by weight of binder. The water to binder ratio (W/B) of the mortar was maintained at 110%±5% with flow table test. Specific gravity, fineness, chemical properties, compressive strength, and porosity test of mortars were determined. The differences in chemical composition of the rice husk ashes with different finenesses from the same batch are small. The use of RHA3 produces the mortars with good strength and low porosity. The strength of the mortar improves with partial replacement of RHA3 in comparison with normal coarse rice husk ash. The use of RHA3 results in a strong and dense mortar, which is due to the better dispersion and filling effect, as well as an increase in the pozzolanic reaction.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z2443)State Key Laboratory for Man ufacturing Systems Engineering of Xi’an Jiaotong University of China
文摘Off-line programming (OLP) system becomes one of the most important programming modules for the robotic belt grinding process, however there lacks research on increasing the grinding dexterous space depending on the OLP system. A new type of grinding robot and a novel robotic belt grinding workcell are forwarded, and their features are briefly introduced. An open and object-oriented off-line programming system is developed for this robotic belt grinding system. The parameters of the trimmed surface are read from the initial graphics exchange specification (IGES) file of the CAD model of the workpiece. The deBoor-Cox basis function is used to sample the grinding target with local contact frame on the workpiece. The numerical formula of inverse kinematics is set up based on Newton's iterative procedure, to calculate the grinding robot configurations corresponding to the grinding targets. After the grinding path is obtained, the OLP system turns to be more effective than the teach-by-showing system. In order to improve the grinding workspace, an optimization algorithm for dynamic tool frame is proposed and performed on the special robotic belt grinding system. The initial tool frame and the interval of neighboring tool frames are defined as the preparation of the algorithm. An optimized tool local frame can be selected to grind the complex surface for a maximum dexterity index of the robot. Under the optimization algorithm, a simulation of grinding a vane is included and comparison of grinding workspace is done before and after the tool frame optimization. By the algorithm, the grinding workspace can be enlarged. Moreover the dynamic tool frame can be considered to add one degree-of-freedom to the grinding kinematical chain, which provides the theoretical support for the improvement of robotic dexterity for the complex surface grinding.
文摘An experimental study was carried out to investigat e the influence of temperatures on workpiece surface integrity in surface grinding of a cast nickel-based superalloy with alumina abrasive wheels. Temperatur e response at the wheel-workpiece interface was measured using a grindable foil /workpiece thermocouple. Specimens with different grinding temperatures were obt ained through changing grinding conditions including depth of cut, workpiece fee d speed, and coolant supply. Changes in surface roughness, residual stress, meta llographies, ground surface morphology, and micro hardness on the specimens were then analyzed. Bending fatigue tests were separately conducted at room temperat ure and 950oC in an effort to evaluate the influence of temperatures on the serv ice life of the ground specimens. A different burning color was found on the gro und workpiece surfaces when grinding temperatures are over a critical value. Alo ng with the emergence of burning color, roughness of the ground workpiece surfac e increased greatly compared with the surfaces without burning color, which was attributed to the plastically deformed coatings on the workpiece surface with el evated temperatures. Excepting the surface roughness, other items concerning the surface integrity of the ground workpiece were not affected by temperatures pro vided that grinding temperatures are not high enough to cause grinding cracks. B ased on the findings in this study, the grinding of the nickel-based superalloy can be divided into two stages in order to increase production efficiency, in which case the first stage is to reach an high material removal rate without concerning of the presence of burning color, whereas the second stage is to remo ve the plastically deformed coatings in order to decrease surface roughness.
基金Project supported by the National Natural Science Foundation of China (20476002)
文摘The non-grinding long afterglow material SrAl2O4:Eu^2+ , Dy^3+ was prepared by combustion method in home mierowave oven direetly, after dispersant, frother, eomburent, and mineralizer were added into the reacting system. XRD analysis showed that the powders were nearly pure SrAl2O4 phase with few other phases, and the size of the grain was 41.1 nm. Fluoreseenee speetrum results indieated that there were 2 exeitation peaks loeated at 345 and 400 nm, and the emission peak loeated at 516 nm, afterglow lasted up to 30 min or more. The mierowave eombustion method has advantages of less time, low temperature and no grinding process, and the material made by the method has good luminescent property.
基金financially supported by the National Natural Science Foundation of China (Nos. 51574082 and 51874077)the Fundamental Research Funds for the Central University of China (Nos. N150202001 and N172507012)
文摘The effect of microwave treatment on the grinding and dissociation characteristics of vanadium titano-magnetite(VTM) ore were investigated using scanning electron microscopy(SEM), nitrogen absorption measurements, particle size distribution measurements, X-ray diffraction(XRD) analysis, Fourier transform infrared(FT-IR) spectroscopic analysis, and magnetic separation. SEM analysis showed that microfractures appeared in the microwave-treated VTM, which is attributed to the microwaves' selective heating characteristic and the differential expansion between minerals and gangues. Nitrogen absorption showed that the microfractures were more pronounced when the microwave heating time was increased. Particle size distribution analysis showed that microwave treatment could improve the grindability of the VTM, thus increasing the weight percent of the fine-ground product. The increase in grindability was more significant with prolonged heating time. Moreover, the particle size distribution of the fine-ground product changed only slightly after the microwave treatment. XRD analysis showed that the crystallinity of the microwave-treated VTM increased with increasing microwave heating time. The magnetic separation tests revealed that the separation efficiency increased as a result of the intergranular fractures generated by microwave treatment. The Fe grade of the magnetic fraction of microwave-treated VTM was 1.72% higher than that of the raw ore. We concluded that the microwave treatment was beneficial, especially for the mineral processing characteristics.
基金Item Sponsored by Guiding Program of Science and Technology Research of Jilin Province of China (20000513)
文摘The low-energy, multi-impact fracture resistance and the abrasiveness of the cross-rolled low alloy white cast iron grinding balls were studied after heat treatments at residual rolling temperature. Moreover, the means by which they are damaged and characters of the wear surface were analyzed. The results show that high resistance to impact fracture and high abrasiveness can be achieved after appropriate heat treatment at residual rolling temperature. This kind of heat treatment technology has several advantages under low impact and hard abrasive. These results are very useful for determining the optimized heat treatment technology at residual rolling temperatures.
文摘In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond compacts (PDCs) by using the new vitrified bond diamond grinding wheel was discussed. Several factors which influence the properties of grinding wheel such as amount of vitrified bond and the kinds and amount of stuff in grinding wheel were also investigated. It was found that the new vitrified bond can firmly combine diamond grains, when there are only diamonds and vitrified bond in the structure of grinding wheel, the longevity of the grinding wheel is about 2.5-3 times as that of resin bond grinding wheel for processing PDCs. The grinding size precision of PDCs can be improved from 4-0.03 mm to 4-0.01 mm because of larger Young's modulus of vitrified bond than resin bond. The grinding time of a PDC product can be 1.75-2.0 min from 3.25-3.5 min, so this kind of grinding wheel can save much time for processing PDCs. Also, there is hardly noise when using this new vitrified bond diamond grinding wheel to process PDCs. The amount of vitrified bond in grinding wheel influences the longevity of grinding wheel. When the size of diamond grains is 90-107 μm, the optimal amount of vitrified bond in grinding wheel is 21% (wt pct). When the amount of vitrified bond exceeds 21%, there are many pores in grinding block, which will decrease the longevity of grinding wheel. The existence of addition stuff such as Al2O3 or SiC can reduce the longevity of grinding wheel.
基金This project is supported by Provincial Foundation for Young Scientists & Scholars Innovation of Fujian, China (No.0013K13004).
文摘In order to resolve the problems of machining non-axisymmetric aspheric lens,which is short of flexibility in mould grinding and needs high accuracy CNC machine center in globediamond wheel grinding, a new parallel grinding method that utilizes common arc diamond wheel isput forward. Base on the approach calculation of machining locus, the advantages of parallelgrinding that machines non-axisymmetric aspheric lens by 2.5-axis CNC machine center have beenobtained. The results of grinding experiment show the new method can meet the need of grinding highaccuracy non-axisymmetric aspheric lens.
文摘To study the effect of the textural properties of rocks on their crushing feature, the distribution of particle size, the texture, grinding and crushing characteristics of the rocks were investigated, and the relations among them were then analyzed using statistical methods. The relations between the textural properties and the physical and mechanical features of rocks were determined.
文摘Condition monitoring is a very important aspect in automated manufacturing processes. Any malfunction of a machining process will deteriorate production quality and efficiency. This paper presents an application of support vector machines in grinding process monitoring. The paper starts with an overview of grinding behaviour. Grinding force is analysed through a Short Time Fourier Transform (STFT) to identify features for condition monitoring. The Support Vector Machine (SVM) methodology is introduced as a powerful tool for the classification of different wheel wear situations. After training with available signal data, the SVM is able to identify the state of a grinding process. The requirement and strategy for using SVM for grinding process monitoring is discussed, while the result of the example illustrates how effective SVMs can be in determining wheel redress-life.