First of all, we restate a proof of a highly localized special case of a metric tensor uncertainty principle first written up by Unruh. Unruh did not use the Roberson-Walker geometry which we do, and it so happens tha...First of all, we restate a proof of a highly localized special case of a metric tensor uncertainty principle first written up by Unruh. Unruh did not use the Roberson-Walker geometry which we do, and it so happens that the dominant metric tensor we will be examining, is variation in δgtt. The metric tensor variations given by δgrr, δgθθand δgϕϕare negligible, as compared to the variation δgtt. Afterwards, what is referred to by Barbour as emergent duration of time δtis from the Heisenberg Uncertainty principle (HUP) applied to δgttin such a way as to be compared with ΔxΔp≥ℏ2+γ˜∂C∂Vwith V here a volume spatial term and γ˜a complexification strength term and ∂C∂Vinfluence of complexity of physical system being measured in order to obtain a parameterized value for the initial value of an inflaton which we call V0.展开更多
We will first of all reference a value of momentum, in the early universe. This is for 3 + 1 dimensions and is important since Wesson has an integration of this momentum with regards to a 5 dimensional parameter inclu...We will first of all reference a value of momentum, in the early universe. This is for 3 + 1 dimensions and is important since Wesson has an integration of this momentum with regards to a 5 dimensional parameter included in an integration of momentum over space which equals a ration of L divided by small l (length) and all these times a constant. The ratio of L over small l is a way of making deterministic inputs from 5 dimensions into the 3 + 1 dimensional HUP. In doing so, we come up with a very small radial component for reasons which due to an argument from Wesson is a way to deterministically fix one of the variables placed into the 3 + 1 HUP. This is a deterministic input into a derivation which is then First of all, we restate a proof of a highly localized special case of a metric tensor uncertainty principle first written up by Unruh. Unruh did not use the Roberson-Walker geometry which we do, and it so happens that the dominant metric tensor we will be examining, is variation in δg<sub>tt</sub>. The metric tensor variations are given by δg<sub>rr</sub>, δg<sub>θθ</sub> and δg<sub>φφ</sub> are negligible, as compared to the variation δg<sub>tt</sub>. From there the expression for the HUP and its applications into certain cases in the early universe are strictly affected after we take into consideration a vanishingly small r spatial value in how we define δg<sub>tt</sub>.展开更多
We will first of all reference a value of momentum, in the early universe. This is for 3 + 1 dimensions and is important since Wesson has an integration of this momentum with regards to a 5 dimensional parameter inclu...We will first of all reference a value of momentum, in the early universe. This is for 3 + 1 dimensions and is important since Wesson has an integration of this momentum with regards to a 5 dimensional parameter included in an integration of momentum over space which equals a ration of L divided by small l (length) and all these times a constant. The ratio of L over small l is a way of making deterministic inputs from 5 dimensions into the 3 + 1 dimensional HUP. In doing so, we come up with a very small radial component for reasons which due to an argument from Wesson is a way to deterministically fix one of the variables placed into the 3 + 1 HUP. This is a deterministic input into a derivation which is then, first of all, we restate a proof of a highly localized special case of a metric tensor uncertainty principle first written up by Unruh. Unruh did not use the Roberson-Walker geometry which we do, and it so happens that the dominant metric tensor we will be examining is variation in δg<sub>tt</sub>. We state that the metric tensor variations are given by δg<sub>rr</sub>, δg<sub>θθ</sub> and δg<sub>φφ</sub> are negligible contributions, as compared to the variation δg<sub>tt</sub>. From there the expression for the HUP and its applications into certain cases in the early universe are strictly affected after we take into consideration a vanishingly small r spatial value in how we define δg<sub>tt</sub>.展开更多
The quantum gravity problem that the notion of a quantum state, representing the structure of space-time at some instant, and the notion of the evolution of the state, does not get traction, since there are no real “...The quantum gravity problem that the notion of a quantum state, representing the structure of space-time at some instant, and the notion of the evolution of the state, does not get traction, since there are no real “instants”, is avoided by having initial Octonionic geometry embedded in a larger, nonlinear “pilot model” (semi classical) embedding structure. The Penrose suggestion of recycled space time avoiding a “big crunch” is picked as the embedding structure, so as to avoid the “instants” of time issue. Getting Octionic gravity as embedded in a larger, Pilot theory embedding structure may restore Quantum Gravity to its rightful place in early cosmology without the complication of then afterwards “Schrodinger equation” states of the universe, and the transformation of Octonionic gravity to existing space-time is explored via its possible linkage to a new version of the HUP involving metric tensors. We conclude with how specific properties of Octonion numbers algebra influence the structure and behavior of the early-cosmology model. This last point is raised in Section 14, and is akin to a phase transition from Pre-Octonionic geometry, in pre-Planckian space-time, to Octonionic geometry in Planckian space-time. A simple phase transition is alluded to;making this clear is as simple as realizing that Pre-Octonionic is for Pre-Planckian Space-time and Octonionic is for Planckian Space-time. We state that the Standard Model of physics occurs during Planckian Space-time. We also argue that the Standard Model does not apply to Pre Planckian Space-time. This is commensurate with the Octonion number system NOT applying in pre-Planckian space-time, but applying in Plankian space-time. And the last line of Equation (54) gives a minimum time step in pre-Planckian space-time when we do NOT have the Standard Model of physics, or Octonionic Geometry.展开更多
In 2012, the author submitted an article to the Prespacetime Journal based upon the premise of inquiry as to the alleged vanishing of disjoint open sets contributing to quantum vector measures no longer working, i.e. ...In 2012, the author submitted an article to the Prespacetime Journal based upon the premise of inquiry as to the alleged vanishing of disjoint open sets contributing to quantum vector measures no longer working, i.e. the solution in 2012 was that the author stated that quantum measures in 4 dimensions would not work, mandating, if measure theory were used, imbedding in higher dimensions was necessary for a singularity. The idea was to use the methodology of String Theory as to come up with a way out of the impasse if higher dimensions do not exist. We revisit this question, taking into account a derived HUP, for metric tensors if we look at Pre-Planckian space-time introducing a pre-quantum mechanical HUP which may be a way to ascertain a solution not mandating higher dimensions, as well as introducing cautions as to what will disrupt the offered solution. Note that first, measurable spaces allow disjoint sets. Also, that smooth relations alone do not define separability or admit sets Planck’s length, if it exists, is a natural way to get about the “bad effects” of a cosmic singularity at the beginning of space-time evolution, but if a development is to be believed, namely by Stoica in the article, about removing the cosmic singularity as a breakdown point in relativity, there is nothing which forbids space-time from collapsing to a point. Without the use of a Pre Planckian HUP, for metric tensors, the quantum measures in four dimensions break down. We try to ascertain if a Pre Planckian HUP is sufficient to avoid this pathology and also look at if division algebras which can link Octonionic geometry and E8, to Quark spinors, in the standard model and add sufficient definition to the standard model are necessary and sufficient conditions for a metric tensor HUP which may remove this breakdown of the sum rule in the onset of the “Big Bang”.展开更多
We examine through the lens of dynamical systems a “one dimensional” time mapping of emergent VEV from Pre-Planckian space time conditions. As it is, we will from first principles examine what adding acceleration do...We examine through the lens of dynamical systems a “one dimensional” time mapping of emergent VEV from Pre-Planckian space time conditions. As it is, we will from first principles examine what adding acceleration does as to the HUP previously derived. In doing so, we will be trying it in our discussion with the earlier work done on the HUP. not equal to zero, constant, but large would frequently imply which would have three dissimilar real valued roots. And the situation with not equal to zero yields more tractable result for which will have implications for the HUP inequality in Pre-Planckian space-time, and buttresses an analysis of a 1 dimensional “time” mapping for emergent VEV (vacuum expectation values).展开更多
We use the work of de Vega, Sanchez, and Comes (1997), to approximate the “particle density” of a “graviton gas”. This “particle density” derivation is compared with Dolgov’s (1997) expression of the Vacuum ene...We use the work of de Vega, Sanchez, and Comes (1997), to approximate the “particle density” of a “graviton gas”. This “particle density” derivation is compared with Dolgov’s (1997) expression of the Vacuum energy in terms of a phase transition. The idea is to have a quartic potential, and then to utilize the Bogomol’nyi inequality to refine what the phase transition states. We utilize Ng, Infinite quantum information procedures to link our work with initial entropy and other issues and close with a variation in the HUP: at the start of the expansion of the universe.展开更多
文摘First of all, we restate a proof of a highly localized special case of a metric tensor uncertainty principle first written up by Unruh. Unruh did not use the Roberson-Walker geometry which we do, and it so happens that the dominant metric tensor we will be examining, is variation in δgtt. The metric tensor variations given by δgrr, δgθθand δgϕϕare negligible, as compared to the variation δgtt. Afterwards, what is referred to by Barbour as emergent duration of time δtis from the Heisenberg Uncertainty principle (HUP) applied to δgttin such a way as to be compared with ΔxΔp≥ℏ2+γ˜∂C∂Vwith V here a volume spatial term and γ˜a complexification strength term and ∂C∂Vinfluence of complexity of physical system being measured in order to obtain a parameterized value for the initial value of an inflaton which we call V0.
文摘We will first of all reference a value of momentum, in the early universe. This is for 3 + 1 dimensions and is important since Wesson has an integration of this momentum with regards to a 5 dimensional parameter included in an integration of momentum over space which equals a ration of L divided by small l (length) and all these times a constant. The ratio of L over small l is a way of making deterministic inputs from 5 dimensions into the 3 + 1 dimensional HUP. In doing so, we come up with a very small radial component for reasons which due to an argument from Wesson is a way to deterministically fix one of the variables placed into the 3 + 1 HUP. This is a deterministic input into a derivation which is then First of all, we restate a proof of a highly localized special case of a metric tensor uncertainty principle first written up by Unruh. Unruh did not use the Roberson-Walker geometry which we do, and it so happens that the dominant metric tensor we will be examining, is variation in δg<sub>tt</sub>. The metric tensor variations are given by δg<sub>rr</sub>, δg<sub>θθ</sub> and δg<sub>φφ</sub> are negligible, as compared to the variation δg<sub>tt</sub>. From there the expression for the HUP and its applications into certain cases in the early universe are strictly affected after we take into consideration a vanishingly small r spatial value in how we define δg<sub>tt</sub>.
文摘We will first of all reference a value of momentum, in the early universe. This is for 3 + 1 dimensions and is important since Wesson has an integration of this momentum with regards to a 5 dimensional parameter included in an integration of momentum over space which equals a ration of L divided by small l (length) and all these times a constant. The ratio of L over small l is a way of making deterministic inputs from 5 dimensions into the 3 + 1 dimensional HUP. In doing so, we come up with a very small radial component for reasons which due to an argument from Wesson is a way to deterministically fix one of the variables placed into the 3 + 1 HUP. This is a deterministic input into a derivation which is then, first of all, we restate a proof of a highly localized special case of a metric tensor uncertainty principle first written up by Unruh. Unruh did not use the Roberson-Walker geometry which we do, and it so happens that the dominant metric tensor we will be examining is variation in δg<sub>tt</sub>. We state that the metric tensor variations are given by δg<sub>rr</sub>, δg<sub>θθ</sub> and δg<sub>φφ</sub> are negligible contributions, as compared to the variation δg<sub>tt</sub>. From there the expression for the HUP and its applications into certain cases in the early universe are strictly affected after we take into consideration a vanishingly small r spatial value in how we define δg<sub>tt</sub>.
文摘The quantum gravity problem that the notion of a quantum state, representing the structure of space-time at some instant, and the notion of the evolution of the state, does not get traction, since there are no real “instants”, is avoided by having initial Octonionic geometry embedded in a larger, nonlinear “pilot model” (semi classical) embedding structure. The Penrose suggestion of recycled space time avoiding a “big crunch” is picked as the embedding structure, so as to avoid the “instants” of time issue. Getting Octionic gravity as embedded in a larger, Pilot theory embedding structure may restore Quantum Gravity to its rightful place in early cosmology without the complication of then afterwards “Schrodinger equation” states of the universe, and the transformation of Octonionic gravity to existing space-time is explored via its possible linkage to a new version of the HUP involving metric tensors. We conclude with how specific properties of Octonion numbers algebra influence the structure and behavior of the early-cosmology model. This last point is raised in Section 14, and is akin to a phase transition from Pre-Octonionic geometry, in pre-Planckian space-time, to Octonionic geometry in Planckian space-time. A simple phase transition is alluded to;making this clear is as simple as realizing that Pre-Octonionic is for Pre-Planckian Space-time and Octonionic is for Planckian Space-time. We state that the Standard Model of physics occurs during Planckian Space-time. We also argue that the Standard Model does not apply to Pre Planckian Space-time. This is commensurate with the Octonion number system NOT applying in pre-Planckian space-time, but applying in Plankian space-time. And the last line of Equation (54) gives a minimum time step in pre-Planckian space-time when we do NOT have the Standard Model of physics, or Octonionic Geometry.
文摘In 2012, the author submitted an article to the Prespacetime Journal based upon the premise of inquiry as to the alleged vanishing of disjoint open sets contributing to quantum vector measures no longer working, i.e. the solution in 2012 was that the author stated that quantum measures in 4 dimensions would not work, mandating, if measure theory were used, imbedding in higher dimensions was necessary for a singularity. The idea was to use the methodology of String Theory as to come up with a way out of the impasse if higher dimensions do not exist. We revisit this question, taking into account a derived HUP, for metric tensors if we look at Pre-Planckian space-time introducing a pre-quantum mechanical HUP which may be a way to ascertain a solution not mandating higher dimensions, as well as introducing cautions as to what will disrupt the offered solution. Note that first, measurable spaces allow disjoint sets. Also, that smooth relations alone do not define separability or admit sets Planck’s length, if it exists, is a natural way to get about the “bad effects” of a cosmic singularity at the beginning of space-time evolution, but if a development is to be believed, namely by Stoica in the article, about removing the cosmic singularity as a breakdown point in relativity, there is nothing which forbids space-time from collapsing to a point. Without the use of a Pre Planckian HUP, for metric tensors, the quantum measures in four dimensions break down. We try to ascertain if a Pre Planckian HUP is sufficient to avoid this pathology and also look at if division algebras which can link Octonionic geometry and E8, to Quark spinors, in the standard model and add sufficient definition to the standard model are necessary and sufficient conditions for a metric tensor HUP which may remove this breakdown of the sum rule in the onset of the “Big Bang”.
文摘We examine through the lens of dynamical systems a “one dimensional” time mapping of emergent VEV from Pre-Planckian space time conditions. As it is, we will from first principles examine what adding acceleration does as to the HUP previously derived. In doing so, we will be trying it in our discussion with the earlier work done on the HUP. not equal to zero, constant, but large would frequently imply which would have three dissimilar real valued roots. And the situation with not equal to zero yields more tractable result for which will have implications for the HUP inequality in Pre-Planckian space-time, and buttresses an analysis of a 1 dimensional “time” mapping for emergent VEV (vacuum expectation values).
文摘We use the work of de Vega, Sanchez, and Comes (1997), to approximate the “particle density” of a “graviton gas”. This “particle density” derivation is compared with Dolgov’s (1997) expression of the Vacuum energy in terms of a phase transition. The idea is to have a quartic potential, and then to utilize the Bogomol’nyi inequality to refine what the phase transition states. We utilize Ng, Infinite quantum information procedures to link our work with initial entropy and other issues and close with a variation in the HUP: at the start of the expansion of the universe.