水库进行水力排沙时,高含沙水流过程可能会对鱼类等水生动物产生负面影响,其量化评估方法研究较为薄弱。为了预测和评估水库排沙过程对下游鱼类的影响,本文利用黄河花斑裸鲤和鲤鱼在高含沙水体中生存特性研究的实验数据,综合考虑含沙量...水库进行水力排沙时,高含沙水流过程可能会对鱼类等水生动物产生负面影响,其量化评估方法研究较为薄弱。为了预测和评估水库排沙过程对下游鱼类的影响,本文利用黄河花斑裸鲤和鲤鱼在高含沙水体中生存特性研究的实验数据,综合考虑含沙量和粒径、溶解氧、暴露时间、水温等因子对鱼类生存的影响,建立了基于IPSO-BP神经网络的高含沙水体对鱼类致死影响预测方法,对目标鱼类死亡率的预测误差小于6%。本文使用了与BP神经网络紧密耦合并引入动态参数和变异扰动的IPSO算法,较BP和PSO-BP神经网络预测能力更佳,相比国内外已有的Stress Index(SI)、Severity of Ill Effect(SEV)和多元拟合方法预测精度得到显著提升。分析表明,本文提出的预测方法能够考虑高含沙水体中鱼类生存受多环境因子联合制约,且多因子之间存在复杂关联的情况,可为评估高含沙水流过程对水生态的影响提供新的方法。展开更多
消除客流数据随机噪声和确定神经网络超参数是城市轨道交通短时客流预测组合模型需要解决的关键问题。基于弱化客流数据噪声的自适应噪声完全集成经验模式分解算法(CEEMDAN)将客流时序数据分解为若干个频率和复杂度均不同的固有模态函...消除客流数据随机噪声和确定神经网络超参数是城市轨道交通短时客流预测组合模型需要解决的关键问题。基于弱化客流数据噪声的自适应噪声完全集成经验模式分解算法(CEEMDAN)将客流时序数据分解为若干个频率和复杂度均不同的固有模态函数分量和剩余分量后,利用引入自适应策略的改进粒子群算法(IPSO)动态求解长短期记忆神经网络(LSTM)超参数的最优值,构建CEEMDAN-IPSO-LSTM组合模型预测城市轨道交通短时客流量。以广州地铁杨箕站自动售检票系统采集的历史进(出)站客流数据为例进行实验,研究结果表明:IPSO算法较PSO算法在基准测试函数Sphere,Sum Squars,Sum of Different Power,Rosenbrock,Rastigrin,Ackley,Griewank和Penalized上的最小值、最大值、平均值和标准差均更接近最佳优化值,CEEMDAN-IPSO-LSTM模型较LSTM模型、CEEMDAN-LSTM模型、CEEMDAN-PSO-LSTM模型的全月全日进(出)站的预测误差评价指标SD,RMSE,MAE和MAPE分别降低了12~40人次(13~35人次)、13~44人次(12~35人次)、6~37人次(12~31人次)和5.08%~46.89%(6.5%~35.1%),R和R2分别提高了0.07%~2.32%(0.86%~3.63%)和0.13%~2.19%(0.67%~1.67%),同时在工作日不同时段和非工作日全日的预测性能均达到最优效果。IPSO算法的收敛速度和参数寻优精度均优于PSO算法,且CEEMDAN-IPSO-LSTM模型可应用于城市轨道交通短时客流量的精确预测,同时可为设计规划线网路线、缓解交通压力、提高乘客出行服务质量等提供基础数据支撑。展开更多
文摘水库进行水力排沙时,高含沙水流过程可能会对鱼类等水生动物产生负面影响,其量化评估方法研究较为薄弱。为了预测和评估水库排沙过程对下游鱼类的影响,本文利用黄河花斑裸鲤和鲤鱼在高含沙水体中生存特性研究的实验数据,综合考虑含沙量和粒径、溶解氧、暴露时间、水温等因子对鱼类生存的影响,建立了基于IPSO-BP神经网络的高含沙水体对鱼类致死影响预测方法,对目标鱼类死亡率的预测误差小于6%。本文使用了与BP神经网络紧密耦合并引入动态参数和变异扰动的IPSO算法,较BP和PSO-BP神经网络预测能力更佳,相比国内外已有的Stress Index(SI)、Severity of Ill Effect(SEV)和多元拟合方法预测精度得到显著提升。分析表明,本文提出的预测方法能够考虑高含沙水体中鱼类生存受多环境因子联合制约,且多因子之间存在复杂关联的情况,可为评估高含沙水流过程对水生态的影响提供新的方法。
文摘消除客流数据随机噪声和确定神经网络超参数是城市轨道交通短时客流预测组合模型需要解决的关键问题。基于弱化客流数据噪声的自适应噪声完全集成经验模式分解算法(CEEMDAN)将客流时序数据分解为若干个频率和复杂度均不同的固有模态函数分量和剩余分量后,利用引入自适应策略的改进粒子群算法(IPSO)动态求解长短期记忆神经网络(LSTM)超参数的最优值,构建CEEMDAN-IPSO-LSTM组合模型预测城市轨道交通短时客流量。以广州地铁杨箕站自动售检票系统采集的历史进(出)站客流数据为例进行实验,研究结果表明:IPSO算法较PSO算法在基准测试函数Sphere,Sum Squars,Sum of Different Power,Rosenbrock,Rastigrin,Ackley,Griewank和Penalized上的最小值、最大值、平均值和标准差均更接近最佳优化值,CEEMDAN-IPSO-LSTM模型较LSTM模型、CEEMDAN-LSTM模型、CEEMDAN-PSO-LSTM模型的全月全日进(出)站的预测误差评价指标SD,RMSE,MAE和MAPE分别降低了12~40人次(13~35人次)、13~44人次(12~35人次)、6~37人次(12~31人次)和5.08%~46.89%(6.5%~35.1%),R和R2分别提高了0.07%~2.32%(0.86%~3.63%)和0.13%~2.19%(0.67%~1.67%),同时在工作日不同时段和非工作日全日的预测性能均达到最优效果。IPSO算法的收敛速度和参数寻优精度均优于PSO算法,且CEEMDAN-IPSO-LSTM模型可应用于城市轨道交通短时客流量的精确预测,同时可为设计规划线网路线、缓解交通压力、提高乘客出行服务质量等提供基础数据支撑。