In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It ...In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It is proved that a graph G has a fractional 1-factor if bind(G)≥1and has a fractional k-factor if bind(G)≥k−1k. Furthermore, it is showed that both results are best possible in some sense.展开更多
Let integer k≥1, G be a graph of order n,n≥max {4k - 6, 4} and kn=0 (mod 2). Assume that the binding number of G is more than 2-2/n or the minimum degree of G is more than n/2. We prove that (i) G hasa k-fartor that...Let integer k≥1, G be a graph of order n,n≥max {4k - 6, 4} and kn=0 (mod 2). Assume that the binding number of G is more than 2-2/n or the minimum degree of G is more than n/2. We prove that (i) G hasa k-fartor that contains a given edge; (ii) G has a k-factor that does not contain a given edge.展开更多
In this paper the properties of some maximum fractional [0, k]-factors of graphs are presented. And consequently some results on fractional matchings and fractional 1-factors are generalized and a characterization of ...In this paper the properties of some maximum fractional [0, k]-factors of graphs are presented. And consequently some results on fractional matchings and fractional 1-factors are generalized and a characterization of fractional k-factors is obtained.展开更多
By using a non-perturbative quark propagator with the lowest-dimensional condensate contributions from the QCD vacuum, the non-perturbative egect to K-factor of the Drell-Yan process is numerically investigated for 6^...By using a non-perturbative quark propagator with the lowest-dimensional condensate contributions from the QCD vacuum, the non-perturbative egect to K-factor of the Drell-Yan process is numerically investigated for 6^12C- 6^12C collision at the center-of-mass energy √s- 200 GeV, 630 GeV respectively. Calculated results show that the non-perturbative QCD effect has just a weak influence on K-factor in the two cases.展开更多
The effective earth radius factor(k-factor)has a refractive propagation effect on transmitted radio signals thus making its study necessary for the proper planning of terrestrial radio links and power budget.This stud...The effective earth radius factor(k-factor)has a refractive propagation effect on transmitted radio signals thus making its study necessary for the proper planning of terrestrial radio links and power budget.This study was carried out over the city of Lokoja,Nigeria,using ten years(2011 to 2020)atmospheric data of temperature,pressure and humidity both at the surface(12 m)and at 100 m AGL.The data were retrieved from European Centre for Medium-Range Weather Forecasts(ECMWF)ERA5.The k-factor yearly variation follows the same trend with minimum and maximum values obtained during dry and wet season months respectively.In addition,the highest mean value of 1.00042 was recorded in the month of August while the lowest value of 1.00040 was recorded in the month of January with an overall mean value of 1.0003.This value is less than the recommended standard of 1.33 by ITU-R.The propagation effect corresponding to k<1.33 is sub-refractive.The implication of this on radio wave propagation,especially terrestrial communications is that transmitted wireless signal is prone to losses.This can be mitigated through an effective power budget:Choice of transmitting antenna’s height and gain,so as to improve the Quality of Service over the study area.展开更多
文摘In this paper, we consider the relationship between the binding number and the existence of fractional k-factors of graphs. The binding number of G is defined by Woodall as bind(G)=min{ | NG(X) || X |:∅≠X⊆V(G) }. It is proved that a graph G has a fractional 1-factor if bind(G)≥1and has a fractional k-factor if bind(G)≥k−1k. Furthermore, it is showed that both results are best possible in some sense.
基金Supported by National Natural Science Foundation of China.
文摘Let integer k≥1, G be a graph of order n,n≥max {4k - 6, 4} and kn=0 (mod 2). Assume that the binding number of G is more than 2-2/n or the minimum degree of G is more than n/2. We prove that (i) G hasa k-fartor that contains a given edge; (ii) G has a k-factor that does not contain a given edge.
基金This work is supported by NSFC (10471078.10201019)RSDP (20040422004) of China
文摘In this paper the properties of some maximum fractional [0, k]-factors of graphs are presented. And consequently some results on fractional matchings and fractional 1-factors are generalized and a characterization of fractional k-factors is obtained.
基金The project supported by the Natural Science Foundation of Hebei Province of China under Grant No, A2005000535
文摘By using a non-perturbative quark propagator with the lowest-dimensional condensate contributions from the QCD vacuum, the non-perturbative egect to K-factor of the Drell-Yan process is numerically investigated for 6^12C- 6^12C collision at the center-of-mass energy √s- 200 GeV, 630 GeV respectively. Calculated results show that the non-perturbative QCD effect has just a weak influence on K-factor in the two cases.
文摘The effective earth radius factor(k-factor)has a refractive propagation effect on transmitted radio signals thus making its study necessary for the proper planning of terrestrial radio links and power budget.This study was carried out over the city of Lokoja,Nigeria,using ten years(2011 to 2020)atmospheric data of temperature,pressure and humidity both at the surface(12 m)and at 100 m AGL.The data were retrieved from European Centre for Medium-Range Weather Forecasts(ECMWF)ERA5.The k-factor yearly variation follows the same trend with minimum and maximum values obtained during dry and wet season months respectively.In addition,the highest mean value of 1.00042 was recorded in the month of August while the lowest value of 1.00040 was recorded in the month of January with an overall mean value of 1.0003.This value is less than the recommended standard of 1.33 by ITU-R.The propagation effect corresponding to k<1.33 is sub-refractive.The implication of this on radio wave propagation,especially terrestrial communications is that transmitted wireless signal is prone to losses.This can be mitigated through an effective power budget:Choice of transmitting antenna’s height and gain,so as to improve the Quality of Service over the study area.