期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于线指数的核偏最小二乘回归在恒星大气物理参数测量中的应用 被引量:3
1
作者 王杰 潘景昌 谭鑫 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第3期833-837,共5页
恒星大气物理参数(有效温度、表面重力、化学丰度)的自动测量是天体光谱数据自动处理中的一项重要内容。由于光谱数据的高维性的特点,处理运算量非常大,对于光谱的实时分析及处理会造成延误。文章提出了一种基于Lick线指数,利用核偏最... 恒星大气物理参数(有效温度、表面重力、化学丰度)的自动测量是天体光谱数据自动处理中的一项重要内容。由于光谱数据的高维性的特点,处理运算量非常大,对于光谱的实时分析及处理会造成延误。文章提出了一种基于Lick线指数,利用核偏最小二乘回归(KPLSR)对恒星大气物理参数进行测量的方法。可以有效地减少运算量并可达到理想的准确率。首先计算Kurucz合成光谱的Lick线指数,利用核偏最小二乘回归方法建立Lick线指数与大气物理参数之间的核回归模型,并利用DR8实测光谱数据对得到的模型进行测试,将测试的结果与SEGUE SSPP提供的大气物理参数进行了对比,取得了比较好的效果。此外,为了检验噪声对参数测量的影响,本文还对Kurucz光谱分别加了信噪比为10,20,30,40,50,70,90,120的高斯白噪声,对得到的不同信噪比的Kurucz数据进行了测试,实验结果表明,核回归模型对噪声比较敏感,光谱数据的信噪比越高,其大气物理参数的预测精度越高。提出的基于线指数建立核偏最小二乘回归模型的方法运算量小,训练速度快,适合用于恒星大气物理参数的测量。 展开更多
关键词 Lick线指数 核偏最小二乘回归(kplsr) 恒星物理参数 KERNEL PARTIAL least SQUARES regression (kplsr)
下载PDF
Short Term Electric Load Prediction by Incorporation of Kernel into Features Extraction Regression Technique
2
作者 Ruaa Mohamed-Rashad Ghandour Jun Li 《Smart Grid and Renewable Energy》 2017年第1期31-45,共15页
Accurate load prediction plays an important role in smart power management system, either for planning, facing the increasing of load demand, maintenance issues, or power distribution system. In order to achieve a rea... Accurate load prediction plays an important role in smart power management system, either for planning, facing the increasing of load demand, maintenance issues, or power distribution system. In order to achieve a reasonable prediction, authors have applied and compared two features extraction technique presented by kernel partial least square regression and kernel principal component regression, and both of them are carried out by polynomial and Gaussian kernels to map the original features’ to high dimension features’ space, and then draw new predictor variables known as scores and loadings, while kernel principal component regression draws the predictor features to construct new predictor variables without any consideration to response vector. In contrast, kernel partial least square regression does take the response vector into consideration. Models are simulated by three different cities’ electric load data, which used historical load data in addition to weekends and holidays as common predictor features for all models. On the other hand temperature has been used for only one data as a comparative study to measure its effect. Models’ results evaluated by three statistic measurements, show that Gaussian Kernel Partial Least Square Regression offers the more powerful features and significantly can improve the load prediction performance than other presented models. 展开更多
关键词 Short TERM Load PREDICTION Support Vector Regression (SVR) KERNEL Principal Component Regression (KPCR) KERNEL PARTIAL Least SQUARE Regression (kplsr)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部