研究了用Newton-Steffensen法求解非线性算子方程.当非线性算子F的一阶导数满足L-平均Lipschitz条件时,建立了Newton-Steffensen法的三阶收敛判据,同时也给出了收敛球半径的估计.作为应用,当F的一阶导数满足经典的Lipschitz条件时或F满...研究了用Newton-Steffensen法求解非线性算子方程.当非线性算子F的一阶导数满足L-平均Lipschitz条件时,建立了Newton-Steffensen法的三阶收敛判据,同时也给出了收敛球半径的估计.作为应用,当F的一阶导数满足经典的Lipschitz条件时或F满足γ-条件时,建立了Newton-Steffensen法的三阶收敛判据及给出了收敛球半径的估计.从而推广了[Journal of Nonlinear and Convex Analysis,2018,19:433-460]中的相应结果.展开更多
We prove the uniform Lipschitz bound of solutions for a nonlinear elliptic system modeling the steady state of populations that compete in a heterogeneous environment. This extends known quasi-optimal regularity resul...We prove the uniform Lipschitz bound of solutions for a nonlinear elliptic system modeling the steady state of populations that compete in a heterogeneous environment. This extends known quasi-optimal regularity results and covers the optimal case for this problem. The proof relies upon the blow-up technique and the almost monotonicity formula by Caffarelli, Jerison and Kenig.展开更多
本文将Dannan F M.和Elaydi S.[1,2]提出的常微分方程(ODE)的一致lipschitz稳定性概念拓广到滞后型泛函微分方程(RFDE),对一般线性RGDE,我们证明了一致lipschitz稳定与一致稳定是等价的;对一般非线性RFDE,利用liapunov泛函方法,建立了一...本文将Dannan F M.和Elaydi S.[1,2]提出的常微分方程(ODE)的一致lipschitz稳定性概念拓广到滞后型泛函微分方程(RFDE),对一般线性RGDE,我们证明了一致lipschitz稳定与一致稳定是等价的;对一般非线性RFDE,利用liapunov泛函方法,建立了一致lipschitz稳定性必要或充分条件。展开更多
In this paper we shall generalize the definition given in [1] for Lipschitz condition and contractions for functions on a non-metrizable space, besides we shall give more properties of semi-linear uniform spaces.
文摘研究了用Newton-Steffensen法求解非线性算子方程.当非线性算子F的一阶导数满足L-平均Lipschitz条件时,建立了Newton-Steffensen法的三阶收敛判据,同时也给出了收敛球半径的估计.作为应用,当F的一阶导数满足经典的Lipschitz条件时或F满足γ-条件时,建立了Newton-Steffensen法的三阶收敛判据及给出了收敛球半径的估计.从而推广了[Journal of Nonlinear and Convex Analysis,2018,19:433-460]中的相应结果.
文摘We prove the uniform Lipschitz bound of solutions for a nonlinear elliptic system modeling the steady state of populations that compete in a heterogeneous environment. This extends known quasi-optimal regularity results and covers the optimal case for this problem. The proof relies upon the blow-up technique and the almost monotonicity formula by Caffarelli, Jerison and Kenig.
文摘本文将Dannan F M.和Elaydi S.[1,2]提出的常微分方程(ODE)的一致lipschitz稳定性概念拓广到滞后型泛函微分方程(RFDE),对一般线性RGDE,我们证明了一致lipschitz稳定与一致稳定是等价的;对一般非线性RFDE,利用liapunov泛函方法,建立了一致lipschitz稳定性必要或充分条件。
文摘In this paper we shall generalize the definition given in [1] for Lipschitz condition and contractions for functions on a non-metrizable space, besides we shall give more properties of semi-linear uniform spaces.