The quantitative precipitation forecast(QPF) in very-short range(0-12 hours) has been investigated in this paper by using a convective-scale(3km) GRAPES_Meso model. At first, a latent heat nudging(LHN) scheme to assim...The quantitative precipitation forecast(QPF) in very-short range(0-12 hours) has been investigated in this paper by using a convective-scale(3km) GRAPES_Meso model. At first, a latent heat nudging(LHN) scheme to assimilate the hourly intensified surface precipitation data was set up to enhance the initialization of GRAPES_Meso integration. And then based on the LHN scheme, a convective-scale prediction system was built up in considering the initial "triggering"uncertainties by means of multi-scale initial analysis(MSIA), such as the three-dimensional variational data assimilation(3DVAR), the traditional LHN method(VAR0LHN3), the cycling LHN method(CYCLING), the spatial filtering(SS) and the temporal filtering(DFI) LHN methods. Furthermore, the probability matching(PM) method was used to generate the QPF in very-short range by combining the precipitation forecasts of the five runs. The experiments for one month were carried out to validate the MSIA and PM method for QPF in very-short range.The numerical simulation results showed that:(1) in comparison with the control run, the CYCLING run could generate the smaller-scale initial moist increments and was better for reducing the spin-up time and triggering the convection in a very-short time;(2) the DFI runs could generate the initial analysis fields with relatively larger-scale initial increments and trigger the weaker convections at the beginning time(0-3h) of integration, but enhance them at latter time(6-12h);(3) by combining the five runs with different convection triggering features, the PM method could significantly improve the QPF in very-short range in comparison to any single run. Therefore, the QPF with a small size of combining members proposed here is quite prospective in operation for its lower computation cost and better performance.展开更多
This paper presents the forms of the general solution for general anisotropic piezoelectric media starting from the basic equations of piezoelasticity by using the operator method introduced by Lur’e (1964), and give...This paper presents the forms of the general solution for general anisotropic piezoelectric media starting from the basic equations of piezoelasticity by using the operator method introduced by Lur’e (1964), and gives the analytical form of the general solution for special orthotropic piezoelectric media. This paper uses the non-uniqueness of the general solution to obtain the generalized LHN solution and the generalized E-L solution for special orthotropic piezoelectric media. When the special orthotropic piezoelectric media degenerate to transversely piezoelectric media, the solution given by this paper degenerates to the solution for transversely isotropic piezoelectric media accordingly, so that this paper generalized the results in transversely isotropic piezoelectric media.展开更多
基金National(Key)Basic Research and Development(973)Program of China(2013CB430106)the National Natural Science Foundation of China(41375108)
文摘The quantitative precipitation forecast(QPF) in very-short range(0-12 hours) has been investigated in this paper by using a convective-scale(3km) GRAPES_Meso model. At first, a latent heat nudging(LHN) scheme to assimilate the hourly intensified surface precipitation data was set up to enhance the initialization of GRAPES_Meso integration. And then based on the LHN scheme, a convective-scale prediction system was built up in considering the initial "triggering"uncertainties by means of multi-scale initial analysis(MSIA), such as the three-dimensional variational data assimilation(3DVAR), the traditional LHN method(VAR0LHN3), the cycling LHN method(CYCLING), the spatial filtering(SS) and the temporal filtering(DFI) LHN methods. Furthermore, the probability matching(PM) method was used to generate the QPF in very-short range by combining the precipitation forecasts of the five runs. The experiments for one month were carried out to validate the MSIA and PM method for QPF in very-short range.The numerical simulation results showed that:(1) in comparison with the control run, the CYCLING run could generate the smaller-scale initial moist increments and was better for reducing the spin-up time and triggering the convection in a very-short time;(2) the DFI runs could generate the initial analysis fields with relatively larger-scale initial increments and trigger the weaker convections at the beginning time(0-3h) of integration, but enhance them at latter time(6-12h);(3) by combining the five runs with different convection triggering features, the PM method could significantly improve the QPF in very-short range in comparison to any single run. Therefore, the QPF with a small size of combining members proposed here is quite prospective in operation for its lower computation cost and better performance.
基金Project (No. 10372003) supported by the National Natural Science Foundation of China
文摘This paper presents the forms of the general solution for general anisotropic piezoelectric media starting from the basic equations of piezoelasticity by using the operator method introduced by Lur’e (1964), and gives the analytical form of the general solution for special orthotropic piezoelectric media. This paper uses the non-uniqueness of the general solution to obtain the generalized LHN solution and the generalized E-L solution for special orthotropic piezoelectric media. When the special orthotropic piezoelectric media degenerate to transversely piezoelectric media, the solution given by this paper degenerates to the solution for transversely isotropic piezoelectric media accordingly, so that this paper generalized the results in transversely isotropic piezoelectric media.