The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition ...The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition and variation across major geochemical reservoirs is essential for its application in investigating high-temperature processes.However,there is debate regarding theδ^(98/95)Mo value of the Earth’s mantle,with estimates ranging from sub-chondritic to super-chondritic values.Recent analyses of global mid-ocean ridge basalt(MORB)glasses revealed significantδ^(98/95)Mo variations attributed to mantle heterogeneity,proposing a two-component mixing model to explain the observed variation.Complementary studies confirmed the sub-chondriticδ^(98/95)Mo of the depleted upper mantle,suggesting remixing of subduction-modified oceanic crust as a plausible mechanism.These findings underscore the role of Mo isotopes as effective tracers for understanding dynamic processes associated with mantle-crustal recycling.展开更多
基金the National Natural Science Foundation of China(Nos.42176087,42322605)the Laoshan Laboratory(No.LSKJ202204100)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2021206)。
文摘The molybdenum(Mo)isotope system is pivotal in reconstructing marine redox changes throughout Earth’s history and has emerged as a promising tracer for igneous and metamorphic processes.Understanding its composition and variation across major geochemical reservoirs is essential for its application in investigating high-temperature processes.However,there is debate regarding theδ^(98/95)Mo value of the Earth’s mantle,with estimates ranging from sub-chondritic to super-chondritic values.Recent analyses of global mid-ocean ridge basalt(MORB)glasses revealed significantδ^(98/95)Mo variations attributed to mantle heterogeneity,proposing a two-component mixing model to explain the observed variation.Complementary studies confirmed the sub-chondriticδ^(98/95)Mo of the depleted upper mantle,suggesting remixing of subduction-modified oceanic crust as a plausible mechanism.These findings underscore the role of Mo isotopes as effective tracers for understanding dynamic processes associated with mantle-crustal recycling.