North China Mountain Walnut (NCMW) is one of the ancestors of extant cultivated species, and a valuable gene resource for resistance breeding of walnut in China. Inter-Simple Sequence Repeat (ISSR) primers were design...North China Mountain Walnut (NCMW) is one of the ancestors of extant cultivated species, and a valuable gene resource for resistance breeding of walnut in China. Inter-Simple Sequence Repeat (ISSR) primers were designed to evaluate the level and pattern of genetic diversity in eight populations of NCMW. Nine ISSR primers yielded 91 amplification products with different sizes, of which 84 (92.31%) were polymorphic. A high species-level genetic diversity was detected with Nei’s (H = 0.2592) and Shannon’s diversity (I = 0.4003). In contrast, the population-level genetic diversity was relatively lower (PPB = 43.27%, H = 0.1347, I = 0.1862). Coefficient of populations differentiation (GST) was 0.5066, indicating that inter-population and intra-population variation contributed 50.66% and 49.34% respectively to the total genetic variability. This relative level of variation was further supported by AMOVA analysis. Limited gene flow (Nm = 0.5133.), habitat fragmentation and geographical isolation might be responsible for the population structure of NCMW. UPGMA cluster analysis classified the eight populations into three groups which showed no significant relationship between the genetic similarity coefficient and geographic origin but showed remarkable association with morpho-physiological characters, particularly nut traits. The results of the study provide species-level and population-level genetic profiles for further exploitation and conservation of genetic diversity of NCMW.展开更多
文摘North China Mountain Walnut (NCMW) is one of the ancestors of extant cultivated species, and a valuable gene resource for resistance breeding of walnut in China. Inter-Simple Sequence Repeat (ISSR) primers were designed to evaluate the level and pattern of genetic diversity in eight populations of NCMW. Nine ISSR primers yielded 91 amplification products with different sizes, of which 84 (92.31%) were polymorphic. A high species-level genetic diversity was detected with Nei’s (H = 0.2592) and Shannon’s diversity (I = 0.4003). In contrast, the population-level genetic diversity was relatively lower (PPB = 43.27%, H = 0.1347, I = 0.1862). Coefficient of populations differentiation (GST) was 0.5066, indicating that inter-population and intra-population variation contributed 50.66% and 49.34% respectively to the total genetic variability. This relative level of variation was further supported by AMOVA analysis. Limited gene flow (Nm = 0.5133.), habitat fragmentation and geographical isolation might be responsible for the population structure of NCMW. UPGMA cluster analysis classified the eight populations into three groups which showed no significant relationship between the genetic similarity coefficient and geographic origin but showed remarkable association with morpho-physiological characters, particularly nut traits. The results of the study provide species-level and population-level genetic profiles for further exploitation and conservation of genetic diversity of NCMW.