Cowpea (Vigna unguiculata L. Walp) is a multi-purpose legume with high quality protein for human consumption and livestock. The objective of this work was to develop near-infrared spectroscopy (NIRS) prediction models...Cowpea (Vigna unguiculata L. Walp) is a multi-purpose legume with high quality protein for human consumption and livestock. The objective of this work was to develop near-infrared spectroscopy (NIRS) prediction models to estimate protein content in cowpea. A total of 116 cowpea breeding lines with a wide range of protein contents (19.28 % to 32.04%) were selected to build the model using whole seed and ground seed samples. Partial least-squares discriminant analysis (PLS-DA) regression technique with different pre-treatments (derivatives, standard normal variate, and multiplicative scatter correction) were carried out to develop the protein prediction model. Results showed: 1) spectral plots of both the whole seed and ground seed showed higher spectral scatter at higher wavelengths (>1450 nm), 2) data pre-processing affects prediction accuracy for bot whole seed and ground seed samples, 3) prediction using ground seed samples (0.64 R<sup>2</sup> 0.85) is better than the whole seed (0.33 R<sup>2</sup> 0.78), and 4) the data pre-processing second derivative with standard normal variate has the best prediction (R<sup>2</sup>_whole seed = 0.78, R<sup>2</sup>_ground seed = 0.85). The results will be of interest in cowpea breeding programs aimed at improving total seed protein content.展开更多
Soil texture is an indicator of soil physical structure which delivers many ecological functions of soils such as thermal regime, plant growth, and soil quality. However, traditional methods for soil texture measureme...Soil texture is an indicator of soil physical structure which delivers many ecological functions of soils such as thermal regime, plant growth, and soil quality. However, traditional methods for soil texture measurement are time-consuming and labor-intensive. This study attempts to explore an indirect method for rapid estimating the texture of three subgroups of purple soils (i.e. calcareous, neutral, and acidic). 190 topsoil (0 - 10 cm) samples were collected from sloping croplands in Tongnan and Beibei Districts of Chongqing Municipality in China. Vis-NIR spectrum was measured and processed, and stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), and back propagation neural network (BPNN) models were constructed to inform the soil texture. The clay fractions ranged from 4.40% to 27.12% while sand fractions ranged from 0.34% to 36.57%, hereby soil samples encompass three textural classes (i.e. silt, silt loam, and silty clay loam). For the original spectrum, the texture of calcareous and neutral purple soils was not significantly correlated with spectral reflectance and linear models (SMLR and PLSR) exhibited low prediction accuracy. The correlation coefficients and the goodness-of-fits between soil texture and the transformed spectra of all soil groups increased by continuum-removal (CR), first-order differential (R'), and second-order differential (R") transformations. Among them, the R" had the best performance in terms of improving the correlation coefficients and the goodness-of-fits. For the calcareous purple soil, the SMLR exceeds PLSR and BPNN with a higher coefficient of determination (R<sup>2</sup>) and the ratio of performance to inter-quartile distance (RPIQ) values and lower root mean square error of validation (RMSEV), but for the neutral and acidic purple soils, the PLSR model has a better prediction accuracy. In summary, the linear methods (SMLR and PLSR) are more reliable in estimating the texture of the three purple soil groups when using Vis-NIR spectroscopy inversion.展开更多
为了实现晒青毛茶儿茶素含量的快速检测,该研究利用高效液相色谱技术(High Performance Liquid Chromatography,HPLC)测定了50份晒青毛茶样品中的表没食子茶素没食子酸酯(Epigallocatechin Gallate,EGCG)、表没食子儿茶素(Epigallocatec...为了实现晒青毛茶儿茶素含量的快速检测,该研究利用高效液相色谱技术(High Performance Liquid Chromatography,HPLC)测定了50份晒青毛茶样品中的表没食子茶素没食子酸酯(Epigallocatechin Gallate,EGCG)、表没食子儿茶素(Epigallocatechin,EGC)、没食子酸(Gallic Acid,GA)三种儿茶素单体含量,结合样品的近红外光谱,分别建立了晒青毛茶三种儿茶素单体含量的偏最小二乘法(Partial Least Squares,PLS)模型,并对模型进行验证。实验结果表明,基于EGCG、EGC、GA含量所建立近红外模型的决定系数(Coefficient of Determination,R2)分别为99.99%、99.99%、99.92%;校正标准差(Root Mean Square Error of Calibration,RMSEC)分别为0.17、0.15、0.10;相对标准差(Relative Standard Deviation,RSD)分别为0.19%、0.27%、0.56%;外部验证的结果显示,三种儿茶素单体含量模型的预测值与真实值的平均绝对误差分别为0.13、0.12、0.07;平均相对误差分别为0.17、0.25、0.45。实验结果表明,该研究建立的近红外分析模型具有较高的预测准确度和稳定性,在快速检测晒青毛茶儿茶素方面具有潜在应用价值。展开更多
文摘Cowpea (Vigna unguiculata L. Walp) is a multi-purpose legume with high quality protein for human consumption and livestock. The objective of this work was to develop near-infrared spectroscopy (NIRS) prediction models to estimate protein content in cowpea. A total of 116 cowpea breeding lines with a wide range of protein contents (19.28 % to 32.04%) were selected to build the model using whole seed and ground seed samples. Partial least-squares discriminant analysis (PLS-DA) regression technique with different pre-treatments (derivatives, standard normal variate, and multiplicative scatter correction) were carried out to develop the protein prediction model. Results showed: 1) spectral plots of both the whole seed and ground seed showed higher spectral scatter at higher wavelengths (>1450 nm), 2) data pre-processing affects prediction accuracy for bot whole seed and ground seed samples, 3) prediction using ground seed samples (0.64 R<sup>2</sup> 0.85) is better than the whole seed (0.33 R<sup>2</sup> 0.78), and 4) the data pre-processing second derivative with standard normal variate has the best prediction (R<sup>2</sup>_whole seed = 0.78, R<sup>2</sup>_ground seed = 0.85). The results will be of interest in cowpea breeding programs aimed at improving total seed protein content.
文摘Soil texture is an indicator of soil physical structure which delivers many ecological functions of soils such as thermal regime, plant growth, and soil quality. However, traditional methods for soil texture measurement are time-consuming and labor-intensive. This study attempts to explore an indirect method for rapid estimating the texture of three subgroups of purple soils (i.e. calcareous, neutral, and acidic). 190 topsoil (0 - 10 cm) samples were collected from sloping croplands in Tongnan and Beibei Districts of Chongqing Municipality in China. Vis-NIR spectrum was measured and processed, and stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), and back propagation neural network (BPNN) models were constructed to inform the soil texture. The clay fractions ranged from 4.40% to 27.12% while sand fractions ranged from 0.34% to 36.57%, hereby soil samples encompass three textural classes (i.e. silt, silt loam, and silty clay loam). For the original spectrum, the texture of calcareous and neutral purple soils was not significantly correlated with spectral reflectance and linear models (SMLR and PLSR) exhibited low prediction accuracy. The correlation coefficients and the goodness-of-fits between soil texture and the transformed spectra of all soil groups increased by continuum-removal (CR), first-order differential (R'), and second-order differential (R") transformations. Among them, the R" had the best performance in terms of improving the correlation coefficients and the goodness-of-fits. For the calcareous purple soil, the SMLR exceeds PLSR and BPNN with a higher coefficient of determination (R<sup>2</sup>) and the ratio of performance to inter-quartile distance (RPIQ) values and lower root mean square error of validation (RMSEV), but for the neutral and acidic purple soils, the PLSR model has a better prediction accuracy. In summary, the linear methods (SMLR and PLSR) are more reliable in estimating the texture of the three purple soil groups when using Vis-NIR spectroscopy inversion.
文摘为了实现晒青毛茶儿茶素含量的快速检测,该研究利用高效液相色谱技术(High Performance Liquid Chromatography,HPLC)测定了50份晒青毛茶样品中的表没食子茶素没食子酸酯(Epigallocatechin Gallate,EGCG)、表没食子儿茶素(Epigallocatechin,EGC)、没食子酸(Gallic Acid,GA)三种儿茶素单体含量,结合样品的近红外光谱,分别建立了晒青毛茶三种儿茶素单体含量的偏最小二乘法(Partial Least Squares,PLS)模型,并对模型进行验证。实验结果表明,基于EGCG、EGC、GA含量所建立近红外模型的决定系数(Coefficient of Determination,R2)分别为99.99%、99.99%、99.92%;校正标准差(Root Mean Square Error of Calibration,RMSEC)分别为0.17、0.15、0.10;相对标准差(Relative Standard Deviation,RSD)分别为0.19%、0.27%、0.56%;外部验证的结果显示,三种儿茶素单体含量模型的预测值与真实值的平均绝对误差分别为0.13、0.12、0.07;平均相对误差分别为0.17、0.25、0.45。实验结果表明,该研究建立的近红外分析模型具有较高的预测准确度和稳定性,在快速检测晒青毛茶儿茶素方面具有潜在应用价值。