The microstructure of the single hot extruded and annealed Ni50Al20Fe30Y0.003 intermetallic compound alloys has been examined by means of high resolution electron microscopy (HREM). In these extruded and annealed allo...The microstructure of the single hot extruded and annealed Ni50Al20Fe30Y0.003 intermetallic compound alloys has been examined by means of high resolution electron microscopy (HREM). In these extruded and annealed alloys. the ductile phase is of a mixture of the disordered fcc γ matrix and or dered γ' precipitates. This fact well interprets the reason why the degree of annealing treatment can influence the strength and ductility of these alloys. The HREM observation revealed directly that there was some strain concentration at γ'-γ interfaces, due to the presence of more iron atoms in these two phases. The fixed orientation relationship between the γ phase and γ' precipitates was identified to be {001}γ||{00 }γ' and <100 >γ|| < 100 > γ'展开更多
Dense Fe-Al-Cr coatings with approximately 50 μm in thickness are successfully prepared on the 1045 carbon steel substrates via a laser cladding process. Proper Cr content(5 at% Cr) will lead to decrease in the melti...Dense Fe-Al-Cr coatings with approximately 50 μm in thickness are successfully prepared on the 1045 carbon steel substrates via a laser cladding process. Proper Cr content(5 at% Cr) will lead to decrease in the melting point, and improves the viscosity of the liquid and the nucleation rate of the molten pool, leading to refining grains of the solidification structure. As a result, the Fe-29 Al-5 Cr laser cladding layer exhibits the best hardness, plasticity properties, and wear resistance at 400 °C. Excessive Cr for the Fe-29 Al-7.5 Cr coating leads to the formation of Cr2 Al in the grain boundaries and thermal vacancies during the solidification process, resulting in inferior mechanical properties and poor tribological behavior.展开更多
Fe-Ni films with compositions of 73 wt% of Ni and 45 wt% of Ni were used as under bump metallization (UBM) in wafer level chip scale package, and their reliability was evaluated through electromigration (EM) test ...Fe-Ni films with compositions of 73 wt% of Ni and 45 wt% of Ni were used as under bump metallization (UBM) in wafer level chip scale package, and their reliability was evaluated through electromigration (EM) test compared with commercial Cu UBM. For Sn3.SAg0.7Cu(SAC)]Cu solder joints, voids had initiated at Cu cathode after 300 h and typical failures of depletion of Cu cathode and cracks were detected after 1000 h EM. While the SAC]Fe-Ni solder joints kept at a perfect condition without any failures after 1000 h EM. Moreover, the characteristic lifetime calculated by Weibull analysis for Fe-73Ni UBM (2121 h), Fe-45Ni UBM (2340 h) were both over three folds to Cu UBM's (698 h). The failure modes for Fe-Ni solder joints varied with the different growth behavior of intermetallic compounds (IMCs), which can all be classified as the crack at the cathodic interface between solder and outer IMC layer. The atomic fluxes concerned cathode dissolution and crack initiation were analyzed. When Fe-Ni UBM was added, cathode dissolution was suppressed due to the low diffusivity of IMCs and opposite transferring direction to electron flow of Fe atoms. The smaller EM flux within solder material led a smaller vacancy flux in Fe-Ni solder joints, which can explain the delay of solder voids and cracks as well as the much longer lifetime under EM.展开更多
Fe-Ni films with compositions of Fe-75Ni, Fe-50Ni, and Fe-30Ni were used as under bump metallization (UBM) to evaluate the interracial reliability of SnAgCu/Fe-Ni solder joints through ball shear test, high temperat...Fe-Ni films with compositions of Fe-75Ni, Fe-50Ni, and Fe-30Ni were used as under bump metallization (UBM) to evaluate the interracial reliability of SnAgCu/Fe-Ni solder joints through ball shear test, high temperature storage, and temperature cycling. The shear strengths for Fe-75Ni, Fe-5ONi, and Fe-3ONi solder joints after reflow were 42.57, 53.94 and 53.98 MPa, respectively, which were all satisfied the requirement of industrialization (〉34.3 MPa). High temperature storage was conducted at 150, 175 and 200 ℃. It was found that higher Fe content in Fe-Ni layer had the ability to inhibit the mutual diffusion at interface region below 150 ℃, and the growth speed of intermetallic compound (IMC) decreased with increasing Fe concentration. When stored at 200 ℃, the IMC thickness reached a limit for all three films after 4 days, and some cracks occurred at the interface between IMC and Fe-Ni layer. The activation energies for the growth of FeSn2 on Fe-30Ni, Fe-5ONi, and Fe-75Ni films were calculated as 246, 185, and 81 kJ/mol, respectively. Temperature cycling tests revealed that SnAgCu/Fe-5ONi solder joint had the lowest failure rate (less than 10%), and had the best interfacial reliability among three compositions.展开更多
文摘The microstructure of the single hot extruded and annealed Ni50Al20Fe30Y0.003 intermetallic compound alloys has been examined by means of high resolution electron microscopy (HREM). In these extruded and annealed alloys. the ductile phase is of a mixture of the disordered fcc γ matrix and or dered γ' precipitates. This fact well interprets the reason why the degree of annealing treatment can influence the strength and ductility of these alloys. The HREM observation revealed directly that there was some strain concentration at γ'-γ interfaces, due to the presence of more iron atoms in these two phases. The fixed orientation relationship between the γ phase and γ' precipitates was identified to be {001}γ||{00 }γ' and <100 >γ|| < 100 > γ'
基金Funded by National Natural Science Foundation of China(No.51371097)Six Talent Peaks(2015)Project of Jiangsu Province(No.YPC16005-PT)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Dense Fe-Al-Cr coatings with approximately 50 μm in thickness are successfully prepared on the 1045 carbon steel substrates via a laser cladding process. Proper Cr content(5 at% Cr) will lead to decrease in the melting point, and improves the viscosity of the liquid and the nucleation rate of the molten pool, leading to refining grains of the solidification structure. As a result, the Fe-29 Al-5 Cr laser cladding layer exhibits the best hardness, plasticity properties, and wear resistance at 400 °C. Excessive Cr for the Fe-29 Al-7.5 Cr coating leads to the formation of Cr2 Al in the grain boundaries and thermal vacancies during the solidification process, resulting in inferior mechanical properties and poor tribological behavior.
基金financially supported by the National Key Research and Development Program of China(Grant No.2017YFB0305501)the National Natural Science Foundation of China(Grant Nos.51401218 and 51171191)the Osaka University Visiting Scholar Program(Grant No.J135104902)
文摘Fe-Ni films with compositions of 73 wt% of Ni and 45 wt% of Ni were used as under bump metallization (UBM) in wafer level chip scale package, and their reliability was evaluated through electromigration (EM) test compared with commercial Cu UBM. For Sn3.SAg0.7Cu(SAC)]Cu solder joints, voids had initiated at Cu cathode after 300 h and typical failures of depletion of Cu cathode and cracks were detected after 1000 h EM. While the SAC]Fe-Ni solder joints kept at a perfect condition without any failures after 1000 h EM. Moreover, the characteristic lifetime calculated by Weibull analysis for Fe-73Ni UBM (2121 h), Fe-45Ni UBM (2340 h) were both over three folds to Cu UBM's (698 h). The failure modes for Fe-Ni solder joints varied with the different growth behavior of intermetallic compounds (IMCs), which can all be classified as the crack at the cathodic interface between solder and outer IMC layer. The atomic fluxes concerned cathode dissolution and crack initiation were analyzed. When Fe-Ni UBM was added, cathode dissolution was suppressed due to the low diffusivity of IMCs and opposite transferring direction to electron flow of Fe atoms. The smaller EM flux within solder material led a smaller vacancy flux in Fe-Ni solder joints, which can explain the delay of solder voids and cracks as well as the much longer lifetime under EM.
基金the financial support from the Hundred Talents Program of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(Grant No.51101161)+1 种基金the National Basic Research Program of China(Grant No.2010CB631006)the Major National Science and Technology Program of China(Grant No.2011ZX02602)
文摘Fe-Ni films with compositions of Fe-75Ni, Fe-50Ni, and Fe-30Ni were used as under bump metallization (UBM) to evaluate the interracial reliability of SnAgCu/Fe-Ni solder joints through ball shear test, high temperature storage, and temperature cycling. The shear strengths for Fe-75Ni, Fe-5ONi, and Fe-3ONi solder joints after reflow were 42.57, 53.94 and 53.98 MPa, respectively, which were all satisfied the requirement of industrialization (〉34.3 MPa). High temperature storage was conducted at 150, 175 and 200 ℃. It was found that higher Fe content in Fe-Ni layer had the ability to inhibit the mutual diffusion at interface region below 150 ℃, and the growth speed of intermetallic compound (IMC) decreased with increasing Fe concentration. When stored at 200 ℃, the IMC thickness reached a limit for all three films after 4 days, and some cracks occurred at the interface between IMC and Fe-Ni layer. The activation energies for the growth of FeSn2 on Fe-30Ni, Fe-5ONi, and Fe-75Ni films were calculated as 246, 185, and 81 kJ/mol, respectively. Temperature cycling tests revealed that SnAgCu/Fe-5ONi solder joint had the lowest failure rate (less than 10%), and had the best interfacial reliability among three compositions.