The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa...The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines.展开更多
In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed...In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO.展开更多
Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to sol...Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-II into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by in-troduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated;this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions.展开更多
Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when mode...Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply.展开更多
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne...In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature.展开更多
Background: Various training schemes have sought to improve golf-related athletic ability. In the golf swing motion, the muscle strengths of the core and arms play important roles, where a difference typically exists...Background: Various training schemes have sought to improve golf-related athletic ability. In the golf swing motion, the muscle strengths of the core and arms play important roles, where a difference typically exists in the power of arm muscles between the dominant and non- dominant sides. The purposes of this study were to determine the effects of exercises strengthening the core and non-dominant arm muscles of elite golf players (handicap 〈 3) on the increase in drive distance, and to present a corresponding training scheme aimed at improving golf performance ability. Methods: Sixty elite golfers were randomized into the control group (CG, n = 20), core exercise group (CEG, n = 20), and group receiving a combination of muscle strengthening exercises of the non-dominant arm and the core (NCEG, n = 20). The 3 groups conducted the corresponding exercises for 8 weeks, after which the changes in drive distances and isokinetic strength were measured. Results: Significant differences in the overall improvement of drive distance were observed among the groups (p 〈 0.001). Enhancement of the drive distance of NCEG was greater than both CG (p 〈 0.001) and CEG (p = 0.001). Except for trunk flexion, all variables of the measurements of isokinetic strength for NCEG also showed the highest values compared to the other groups. Examination of the correlation between drive distance and isokinetic strength revealed significant correlations of all variables except trunk flexion, wrist extension, and elbow extension. Conclusion: The combination of core and non-dominant arm strength exercises can provide a more effective specialized training program than core alone training for golfers to increase their drive distances.展开更多
Aphasic syndromes usually result from injuries to the dominant hemisphere of the brain. Despite the fact that localization of language functions shows little interindividual variability, several brain areas are simult...Aphasic syndromes usually result from injuries to the dominant hemisphere of the brain. Despite the fact that localization of language functions shows little interindividual variability, several brain areas are simultaneously activated when language tasks are undertaken. Mechanisms of language recovery after brain injury to the dominant hemisphere seem to be relatively stereotyped, including activations of perilesional areas in the acute phase and of homologues of language areas in the non-dominant hemisphere in the subacute phase, later returning to dominant hemisphere activation in the chronic phase. Plasticity mechanisms reopen the critical period of language development, more specifically in what leads to disinhibition of the non-dominant hemisphere when brain lesions affect the dominant hemisphere. The non-dominant hemisphere plays an important role during recovery from aphasia, but currently available rehabilitation therapies have shown limited results for efficient language improvement. Large-scale randomized controlled trials that evaluate well-defined interventions in patients with aphasia are needed for stimulation of neuroplasticity mechanisms that enhance the role of the non-dominant hemisphere for language recovery. Ineffective treatment approaches should be replaced by more promising ones and the latter should be evaluated for proper application. The data generated by such studies could substantiate evidence-based rehabilitation strategies for patients with aphasia.展开更多
Silicon Carbide (SiC) machining by traditional methods with regards to its high hardness is not possible. Electro Discharge Machining, among non-traditional machining methods, is used for machining of SiC. The present...Silicon Carbide (SiC) machining by traditional methods with regards to its high hardness is not possible. Electro Discharge Machining, among non-traditional machining methods, is used for machining of SiC. The present work is aimed to optimize the surface roughness and material removal rate of electro discharge machining of SiC parameters simultaneously. As the output parameters are conflicting in nature, so there is no single combination of machining parameters, which provides the best machining performance. Artificial neural network (ANN) with back propagation algorithm is used to model the process. A multi-objective optimization method, non-dominating sorting genetic algorithm-II is used to optimize the process. Affects of three important input parameters of process viz., discharge current, pulse on time (Ton), pulse off time (Toff) on electric discharge machining of SiC are considered. Experiments have been conducted over a wide range of considered input parameters for training and verification of the model. Testing results demonstrate that the model is suitable for predicting the response parameters. A pareto-optimal set has been predicted in this work.展开更多
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ...The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.展开更多
In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central t...In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.展开更多
This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical...This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis.展开更多
This paper proposes a better modified version of a well-known Multi-Objective Evolutionary Algorithm (MOEA) known as Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The proposed algorithm contains a new mutation...This paper proposes a better modified version of a well-known Multi-Objective Evolutionary Algorithm (MOEA) known as Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The proposed algorithm contains a new mutation algorithm and has been applied on a bi-objective job sequencing problem. The objectives are the minimization of total weighted tardiness and the minimization of the deterioration cost. The results of the proposed algorithm have been compared with those of original NSGA-II. The comparison of the results shows that the modified NSGA-II performs better than the original NSGA-II.展开更多
Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a se...Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a semi-empirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithra applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process.展开更多
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w...An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.展开更多
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes...Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.展开更多
In industrial amine plants the optimized operating conditions are obtained from the conclusion of occurred events and challenges that are normal in the working units. For the sake of reducing the costs, time consuming...In industrial amine plants the optimized operating conditions are obtained from the conclusion of occurred events and challenges that are normal in the working units. For the sake of reducing the costs, time consuming, and preventing unsuitable accidents, the optimization could be performed by a computer program. In this paper, simulation and parameter analysis of amine plant is performed at first. The optimization of this unit is studied using Non-Dominated Sorting Genetic Algorithm-II in order to produce sweet gas with CO 2 mole percentage less than 2.0% and H 2 S concentration less than 10 ppm for application in Fischer-Tropsch synthesis. The simulation of the plant in HYSYS v.3.1 software has been linked with MATLAB code for real-parameter NSGA-II to simulate and optimize the amine process. Three scenarios are selected to cover the effect of (DEA/MDEA) mass composition percent ratio at amine solution on objective functions. Results show that sour gas temperature and pressure of 33.98 ? C and 14.96 bar, DEA/CO 2 molar flow ratio of 12.58, regeneration gas temperature and pressure of 94.92 ? C and 3.0 bar, regenerator pressure of 1.53 bar, and ratio of DEA/MDEA = 20%/10% are the best values for minimizing plant energy consumption, amine circulation rate, and carbon dioxide recovery.展开更多
The structure characteristic of the three-loop autopilot is analyzed and the pole placement analytic algorithm is given. In order to ensure that the system will meet the stability requirement when taking the dynamic c...The structure characteristic of the three-loop autopilot is analyzed and the pole placement analytic algorithm is given. In order to ensure that the system will meet the stability requirement when taking the dynamic characteristics of all the hardware devices into account, the frequency of the open-loop crossover should be constrained. Based on the pole placement algorithm, a non-linear equation with the non-dominant pole as a variable and the open-loop crossover frequency as a con- straint is constructed. Solving the equation and getting the corresponding value of the non-dominant pole, the design of autopilot can be completed. Finally, through an example, it is shown that the method is convenient and practicable for the design of a three-loop autopilot.展开更多
Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating...Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating curve (SRC) and the methods proposed to correct it,the results of this model are still not sufficiently accurate.In this study,in order to increase the efficiency of SRC model,a multi-objective optimization approach is proposed using the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) algorithm.The instantaneous flow discharge and SSL data from the Ramian hydrometric station on the Ghorichay River,Iran are used as a case study.In the first part of the study,using self-organizing map (SOM),an unsupervised artificial neural network,the data were clustered and classified as two homogeneous groups as 70% and 30% for use in calibration and evaluation of SRC models,respectively.In the second part of the study,two different groups of SRC model comprised of conventional SRC models and optimized models (single and multi-objective optimization algorithms) were extracted from calibration data set and their performance was evaluated.The comparative analysis of the results revealed that the optimal SRC model achieved through NSGA-Ⅱ algorithm was superior to the SRC models in the daily SSL estimation for the data used in this study.Given that the use of the SRC model is common,the proposed model in this study can increase the efficiency of this regression model.展开更多
基金Project supported by the National Basic Research Program of China (973 Program) (No. 2007CB714600)
文摘The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines.
基金Foundation item: Projects(61102106, 61102105) supported by the National Natural Science Foundation of China Project(2013M530148) supported by China Postdoctoral Science Foundation Project(HEUCF120806) supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to solve discrete multi-objective optimization problems, a non-dominated sorting quantum particle swarm optimization (NSQPSO) based on non-dominated sorting and quantum particle swarm optimization is proposed, and the performance of the NSQPSO is evaluated through five classical benchmark functions. The quantum particle swarm optimization (QPSO) applies the quantum computing theory to particle swarm optimization, and thus has the advantages of both quantum computing theory and particle swarm optimization, so it has a faster convergence rate and a more accurate convergence value. Therefore, QPSO is used as the evolutionary method of the proposed NSQPSO. Also NSQPSO is used to solve cognitive radio spectrum allocation problem. The methods to complete spectrum allocation in previous literature only consider one objective, i.e. network utilization or fairness, but the proposed NSQPSO method, can consider both network utilization and fairness simultaneously through obtaining Pareto front solutions. Cognitive radio systems can select one solution from the Pareto front solutions according to the weight of network reward and fairness. If one weight is unit and the other is zero, then it becomes single objective optimization, so the proposed NSQPSO method has a much wider application range. The experimental research results show that the NSQPS can obtain the same non-dominated solutions as exhaustive search but takes much less time in small dimensions; while in large dimensions, where the problem cannot be solved by exhaustive search, the NSQPSO can still solve the problem, which proves the effectiveness of NSQPSO.
基金the Natural Science Key Foundation of Heilongjiang Province of China (No. ZJG0503) China-UK Sci-ence Network from Royal Society UK
文摘Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-II into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by in-troduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated;this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions.
基金supported by National Natural Science Foundation of China (No.60474059)Hi-tech Research and Development Program of China (863 Program,No.2006AA04Z160).
文摘Vehicle routing problem in distribution (VRPD) is a widely used type of vehicle routing problem (VRP), which has been proved as NP-Hard, and it is usually modeled as single objective optimization problem when modeling. For multi-objective optimization model, most researches consider two objectives. A multi-objective mathematical model for VRP is proposed, which considers the number of vehicles used, the length of route and the time arrived at each client. Genetic algorithm is one of the most widely used algorithms to solve VRP. As a type of genetic algorithm (GA), non-dominated sorting in genetic algorithm-Ⅱ (NSGA-Ⅱ) also suffers from premature convergence and enclosure competition. In order to avoid these kinds of shortage, a greedy NSGA-Ⅱ (GNSGA-Ⅱ) is proposed for VRP problem. Greedy algorithm is implemented in generating the initial population, cross-over and mutation. All these procedures ensure that NSGA-Ⅱ is prevented from premature convergence and refine the performance of NSGA-Ⅱ at each step. In the distribution problem of a distribution center in Michigan, US, the GNSGA-Ⅱ is compared with NSGA-Ⅱ. As a result, the GNSGA-Ⅱ is the most efficient one and can get the most optimized solution to VRP problem. Also, in GNSGA-Ⅱ, premature convergence is better avoided and search efficiency has been improved sharply.
基金This research was supported by the Researchers Supporting Program(TUMAProject-2021-27)Almaarefa University,Riyadh,Saudi Arabia.
文摘In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature.
文摘Background: Various training schemes have sought to improve golf-related athletic ability. In the golf swing motion, the muscle strengths of the core and arms play important roles, where a difference typically exists in the power of arm muscles between the dominant and non- dominant sides. The purposes of this study were to determine the effects of exercises strengthening the core and non-dominant arm muscles of elite golf players (handicap 〈 3) on the increase in drive distance, and to present a corresponding training scheme aimed at improving golf performance ability. Methods: Sixty elite golfers were randomized into the control group (CG, n = 20), core exercise group (CEG, n = 20), and group receiving a combination of muscle strengthening exercises of the non-dominant arm and the core (NCEG, n = 20). The 3 groups conducted the corresponding exercises for 8 weeks, after which the changes in drive distances and isokinetic strength were measured. Results: Significant differences in the overall improvement of drive distance were observed among the groups (p 〈 0.001). Enhancement of the drive distance of NCEG was greater than both CG (p 〈 0.001) and CEG (p = 0.001). Except for trunk flexion, all variables of the measurements of isokinetic strength for NCEG also showed the highest values compared to the other groups. Examination of the correlation between drive distance and isokinetic strength revealed significant correlations of all variables except trunk flexion, wrist extension, and elbow extension. Conclusion: The combination of core and non-dominant arm strength exercises can provide a more effective specialized training program than core alone training for golfers to increase their drive distances.
基金supported by a grant from CAPES-Coordenao de Aperfeioamento de Pessoal de Nível Superior(Brazil)
文摘Aphasic syndromes usually result from injuries to the dominant hemisphere of the brain. Despite the fact that localization of language functions shows little interindividual variability, several brain areas are simultaneously activated when language tasks are undertaken. Mechanisms of language recovery after brain injury to the dominant hemisphere seem to be relatively stereotyped, including activations of perilesional areas in the acute phase and of homologues of language areas in the non-dominant hemisphere in the subacute phase, later returning to dominant hemisphere activation in the chronic phase. Plasticity mechanisms reopen the critical period of language development, more specifically in what leads to disinhibition of the non-dominant hemisphere when brain lesions affect the dominant hemisphere. The non-dominant hemisphere plays an important role during recovery from aphasia, but currently available rehabilitation therapies have shown limited results for efficient language improvement. Large-scale randomized controlled trials that evaluate well-defined interventions in patients with aphasia are needed for stimulation of neuroplasticity mechanisms that enhance the role of the non-dominant hemisphere for language recovery. Ineffective treatment approaches should be replaced by more promising ones and the latter should be evaluated for proper application. The data generated by such studies could substantiate evidence-based rehabilitation strategies for patients with aphasia.
文摘Silicon Carbide (SiC) machining by traditional methods with regards to its high hardness is not possible. Electro Discharge Machining, among non-traditional machining methods, is used for machining of SiC. The present work is aimed to optimize the surface roughness and material removal rate of electro discharge machining of SiC parameters simultaneously. As the output parameters are conflicting in nature, so there is no single combination of machining parameters, which provides the best machining performance. Artificial neural network (ANN) with back propagation algorithm is used to model the process. A multi-objective optimization method, non-dominating sorting genetic algorithm-II is used to optimize the process. Affects of three important input parameters of process viz., discharge current, pulse on time (Ton), pulse off time (Toff) on electric discharge machining of SiC are considered. Experiments have been conducted over a wide range of considered input parameters for training and verification of the model. Testing results demonstrate that the model is suitable for predicting the response parameters. A pareto-optimal set has been predicted in this work.
基金in part supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB1141,2023BAB094)the Key Project of Science and Technology Research ProgramofHubei Educational Committee(No.D20211402)+1 种基金the Teaching Research Project of Hubei University of Technology(No.XIAO2018001)the Project of Xiangyang Industrial Research Institute of Hubei University of Technology(No.XYYJ2022C04).
文摘The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.
基金support from the National Science and Technology Council of Taiwan(Contract Nos.112-2221-E-011-115 and 111-2622-E-011019)the support from Intelligent Manufacturing Innovation Center(IMIC),National Taiwan University of Science and Technology(NTUST),Taipei 10607,Taiwan,which is a Featured Areas Research Center in Higher Education Sprout Project of Ministry of Education(MOE),Taiwan(since 2023)was appreciated.
文摘In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.
基金supported in part by the National Natural Science Foundation of China under Grant No.52177171 and 51877040Jiangsu Provincial Key Laboratory of Smart Grid Technology and Equipment,Southeast University,China.
文摘This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis.
文摘This paper proposes a better modified version of a well-known Multi-Objective Evolutionary Algorithm (MOEA) known as Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The proposed algorithm contains a new mutation algorithm and has been applied on a bi-objective job sequencing problem. The objectives are the minimization of total weighted tardiness and the minimization of the deterioration cost. The results of the proposed algorithm have been compared with those of original NSGA-II. The comparison of the results shows that the modified NSGA-II performs better than the original NSGA-II.
基金National Key Technologies Research and Development Program in the 10th Five-year Phan(No.2001BA204B01)National Outstanding Youth Science Foundation of China(No.60025308)
文摘Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process modei that has been proved to describe industrial process quite well. The modei is a semi-empirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithra applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process.
基金supported by the National Natural Science Foundation of China (60632050)National Basic Research Program of Jiangsu Province University (08KJB520003)
文摘An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.
文摘Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.
文摘In industrial amine plants the optimized operating conditions are obtained from the conclusion of occurred events and challenges that are normal in the working units. For the sake of reducing the costs, time consuming, and preventing unsuitable accidents, the optimization could be performed by a computer program. In this paper, simulation and parameter analysis of amine plant is performed at first. The optimization of this unit is studied using Non-Dominated Sorting Genetic Algorithm-II in order to produce sweet gas with CO 2 mole percentage less than 2.0% and H 2 S concentration less than 10 ppm for application in Fischer-Tropsch synthesis. The simulation of the plant in HYSYS v.3.1 software has been linked with MATLAB code for real-parameter NSGA-II to simulate and optimize the amine process. Three scenarios are selected to cover the effect of (DEA/MDEA) mass composition percent ratio at amine solution on objective functions. Results show that sour gas temperature and pressure of 33.98 ? C and 14.96 bar, DEA/CO 2 molar flow ratio of 12.58, regeneration gas temperature and pressure of 94.92 ? C and 3.0 bar, regenerator pressure of 1.53 bar, and ratio of DEA/MDEA = 20%/10% are the best values for minimizing plant energy consumption, amine circulation rate, and carbon dioxide recovery.
文摘The structure characteristic of the three-loop autopilot is analyzed and the pole placement analytic algorithm is given. In order to ensure that the system will meet the stability requirement when taking the dynamic characteristics of all the hardware devices into account, the frequency of the open-loop crossover should be constrained. Based on the pole placement algorithm, a non-linear equation with the non-dominant pole as a variable and the open-loop crossover frequency as a con- straint is constructed. Solving the equation and getting the corresponding value of the non-dominant pole, the design of autopilot can be completed. Finally, through an example, it is shown that the method is convenient and practicable for the design of a three-loop autopilot.
文摘Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating curve (SRC) and the methods proposed to correct it,the results of this model are still not sufficiently accurate.In this study,in order to increase the efficiency of SRC model,a multi-objective optimization approach is proposed using the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) algorithm.The instantaneous flow discharge and SSL data from the Ramian hydrometric station on the Ghorichay River,Iran are used as a case study.In the first part of the study,using self-organizing map (SOM),an unsupervised artificial neural network,the data were clustered and classified as two homogeneous groups as 70% and 30% for use in calibration and evaluation of SRC models,respectively.In the second part of the study,two different groups of SRC model comprised of conventional SRC models and optimized models (single and multi-objective optimization algorithms) were extracted from calibration data set and their performance was evaluated.The comparative analysis of the results revealed that the optimal SRC model achieved through NSGA-Ⅱ algorithm was superior to the SRC models in the daily SSL estimation for the data used in this study.Given that the use of the SRC model is common,the proposed model in this study can increase the efficiency of this regression model.