Mesoporous materials with uniform pores and high specific areas are used in many fields including catalysts, separation and adsorbents, etc. In order to find faster and more economical synthesis routes, the use of mic...Mesoporous materials with uniform pores and high specific areas are used in many fields including catalysts, separation and adsorbents, etc. In order to find faster and more economical synthesis routes, the use of microwave heating was deeply studied. Compared to the hydrothermal method, microwave energy can heat the samples to crystallization temperature rapidly and uniformly result in homogeneous nucleation and shorten crystallization time. The basic principles of microwave assisted synthesis and advantages of microwave heating, and the obtained progress concerning ordered mesoporous materials through microwave synthesis were summarized.展开更多
基金Project(20775096/B050104) supported by the National Natural Science Foundation of ChinaProject(20080440696) supported by China Postdoctoral Science Foundation
文摘Mesoporous materials with uniform pores and high specific areas are used in many fields including catalysts, separation and adsorbents, etc. In order to find faster and more economical synthesis routes, the use of microwave heating was deeply studied. Compared to the hydrothermal method, microwave energy can heat the samples to crystallization temperature rapidly and uniformly result in homogeneous nucleation and shorten crystallization time. The basic principles of microwave assisted synthesis and advantages of microwave heating, and the obtained progress concerning ordered mesoporous materials through microwave synthesis were summarized.