In this paper,we investigate the{P,Q,k+1}-reflexive and anti-reflexive solutions to the system of matrix equations AX=C,XB=D and AXB=E.We present the necessary and sufficient conditions for the system men-tioned above...In this paper,we investigate the{P,Q,k+1}-reflexive and anti-reflexive solutions to the system of matrix equations AX=C,XB=D and AXB=E.We present the necessary and sufficient conditions for the system men-tioned above to have the{P,Q,k+1}-reflexive and anti-reflexive solutions.We also obtain the expressions of such solutions to the system by the singular value decomposition.Moreover,we consider the least squares{P,Q,k+1}-reflexive and anti-reflexive solutions to the system.Finally,we give an algorithm to illustrate the results of this paper.展开更多
Let P∈C^(m×m)and Q∈C^(n×n)be Hermitian and{k+1}-potent matrices,i.e.,P k+1=P=P∗,Qk+1=Q=Q∗,where(·)∗stands for the conjugate transpose of a matrix.A matrix X∈C m×n is called{P,Q,k+1}-reflexive(an...Let P∈C^(m×m)and Q∈C^(n×n)be Hermitian and{k+1}-potent matrices,i.e.,P k+1=P=P∗,Qk+1=Q=Q∗,where(·)∗stands for the conjugate transpose of a matrix.A matrix X∈C m×n is called{P,Q,k+1}-reflexive(anti-reflexive)if P XQ=X(P XQ=−X).In this paper,the least squares solution of the matrix equation AXB=C subject to{P,Q,k+1}-reflexive and anti-reflexive constraints are studied by converting into two simpler cases:k=1 and k=2.展开更多
基金supported by the National Natural Science Foundation of China(11571220)
文摘In this paper,we investigate the{P,Q,k+1}-reflexive and anti-reflexive solutions to the system of matrix equations AX=C,XB=D and AXB=E.We present the necessary and sufficient conditions for the system men-tioned above to have the{P,Q,k+1}-reflexive and anti-reflexive solutions.We also obtain the expressions of such solutions to the system by the singular value decomposition.Moreover,we consider the least squares{P,Q,k+1}-reflexive and anti-reflexive solutions to the system.Finally,we give an algorithm to illustrate the results of this paper.
基金Supported by the Education Department Foundation of Hebei Province(Grant No.QN2015218).
文摘Let P∈C^(m×m)and Q∈C^(n×n)be Hermitian and{k+1}-potent matrices,i.e.,P k+1=P=P∗,Qk+1=Q=Q∗,where(·)∗stands for the conjugate transpose of a matrix.A matrix X∈C m×n is called{P,Q,k+1}-reflexive(anti-reflexive)if P XQ=X(P XQ=−X).In this paper,the least squares solution of the matrix equation AXB=C subject to{P,Q,k+1}-reflexive and anti-reflexive constraints are studied by converting into two simpler cases:k=1 and k=2.