We previously functionally characterized a novel marine microbial GDSL lipase MT6 and identified that the stereo-selectivity of MT6 was opposite to that of other common lipases in trans-esterification reactions.Herein...We previously functionally characterized a novel marine microbial GDSL lipase MT6 and identified that the stereo-selectivity of MT6 was opposite to that of other common lipases in trans-esterification reactions.Herein,we have investigated the use of MT6 in stereo-selective biocatalysis through direct hydrolysis reactions.Notably,the stereo-selectivity of MT6 was also demonstrated to be opposite to that of other common lipases in hydrolysis reactions.Parameters,including temperature,organic co-solvents,pH,ionic strength,catalyst loading,substrate concentration,and reaction time,affecting the enzymatic resolution of racemic 1-phenylethyl acetate were further investigated,with the e.e.of the final(S)-l-Phenylethanol product and the conversion being 97%and 28.5%,respectively,after process optimization.The lengths of side chains of 1-phenylethyl esters greatly affected the stereo-selectivity and conversion during kinetic resolutions.MT6 is a novel marine microbial GDSL lipase exhibiting opposite stereo-selectivities than other common lipases in both trans-esterification reactions and hydrolysis reactions.展开更多
Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption,...Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption, intracellular glycogen content, phosphorylation of PI3K and Akt stimulated by insulin, expression of miR-455-5p, as well as IGF-1R protein level were analyzed. In addition, bioinformatic analysis, dual luciferase reporter assay, miR- 455-5p mimic or inhibitor treatment was conducted to investigate the molecular mechanisms. Results: High glucose treatment upregulated miR-455-5p expression but reduced glucose consumption and glycogen content. DAG reversed the effect of high glucose on glucose metabolism, increased protein level of IGF-1R and phosphorylation of PI3K/Akt stimulated by insulin, as well as downregulated miR-455-5p expression. Bioinformatic analysis indicated IGF-1R was the target of miR-455-5p. Dual luciferase reporter assay, as well as transfection with miR-455-5p mimic/inhibitor confirmed that DAG activated IGF-1R/PI3K/Akt signaling via inhibiting miR-455-5p. Conclusion: DAG improves insulin resistance via miR-455-5p- mediated activation of IGF-1R/PI3K/Akt system, suggesting that suppression of miR-455-5p or activation of DAG may be potential targets for T2DM therapy.展开更多
旨在证明miR-324-3p可以通过调控其预测的靶基因MC1R及其下游基因的表达从而对羊驼皮肤黑色素的合成产生影响。本研究在体外培养的羊驼皮肤黑色素细胞中转染miR-324-3p过表达载体,应用qRT-PCR与Western blotting分析比较各试验组中MC1R...旨在证明miR-324-3p可以通过调控其预测的靶基因MC1R及其下游基因的表达从而对羊驼皮肤黑色素的合成产生影响。本研究在体外培养的羊驼皮肤黑色素细胞中转染miR-324-3p过表达载体,应用qRT-PCR与Western blotting分析比较各试验组中MC1R基因与毛色相关基因小眼畸形相关转录因子(Microphthalmia-associtated transcription factor,Mitf)、酪氨酸酶(Tyrosinase,Tyr)、酪氨酸相关蛋白2(Tyrosinase related protein 2,Tyrp2)的表达差异性,利用酶标仪检测黑色素产量的变化。结果显示:(1)miR-324-3p在棕色与白色羊驼皮肤中均有表达,且在棕色羊驼皮肤中极显著表达(P<0.01),其相对表达量是白色的1.64倍;(2)黑色素细胞被转染了miR-324-3p过表达载体后,处理组靶基因MC1R及其下游调控基因Mitf、Tyr和Tyrp2的表达量与黑色素产量较空白对照组均有下调,且以Mitf基因表达量极显著下调(P<0.01)。综上表明,羊驼皮肤中miR-324-3p可能通过调控MC1R基因的表达,顺势下调MC1R基因下游调控基因Mitf、Tyr与Tyrp2的表达,最终对羊驼皮肤黑色素细胞中黑色素的类型及合成量产生影响。展开更多
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA11030404),the Key Project from Chinese Academy of Sciences(KGZD-EW-606)the National Natural Science Foundation of China(21302199)Guangzhou Science and Technology Plan Projects(201510010012)
文摘We previously functionally characterized a novel marine microbial GDSL lipase MT6 and identified that the stereo-selectivity of MT6 was opposite to that of other common lipases in trans-esterification reactions.Herein,we have investigated the use of MT6 in stereo-selective biocatalysis through direct hydrolysis reactions.Notably,the stereo-selectivity of MT6 was also demonstrated to be opposite to that of other common lipases in hydrolysis reactions.Parameters,including temperature,organic co-solvents,pH,ionic strength,catalyst loading,substrate concentration,and reaction time,affecting the enzymatic resolution of racemic 1-phenylethyl acetate were further investigated,with the e.e.of the final(S)-l-Phenylethanol product and the conversion being 97%and 28.5%,respectively,after process optimization.The lengths of side chains of 1-phenylethyl esters greatly affected the stereo-selectivity and conversion during kinetic resolutions.MT6 is a novel marine microbial GDSL lipase exhibiting opposite stereo-selectivities than other common lipases in both trans-esterification reactions and hydrolysis reactions.
基金Changshu Science and Technology Plan(Social Development)Project(No.CS202130)Key Project of Changshu No.2 People’s Hospital(No.CSEY2021007)。
文摘Objective: To explore the mechanism by which ghrelin regulates insulin sensitivity through modulation of miR-455-5p in hepatic cells. Methods: HepG2 cells were treated with or without DAG (1 μM). Glucose consumption, intracellular glycogen content, phosphorylation of PI3K and Akt stimulated by insulin, expression of miR-455-5p, as well as IGF-1R protein level were analyzed. In addition, bioinformatic analysis, dual luciferase reporter assay, miR- 455-5p mimic or inhibitor treatment was conducted to investigate the molecular mechanisms. Results: High glucose treatment upregulated miR-455-5p expression but reduced glucose consumption and glycogen content. DAG reversed the effect of high glucose on glucose metabolism, increased protein level of IGF-1R and phosphorylation of PI3K/Akt stimulated by insulin, as well as downregulated miR-455-5p expression. Bioinformatic analysis indicated IGF-1R was the target of miR-455-5p. Dual luciferase reporter assay, as well as transfection with miR-455-5p mimic/inhibitor confirmed that DAG activated IGF-1R/PI3K/Akt signaling via inhibiting miR-455-5p. Conclusion: DAG improves insulin resistance via miR-455-5p- mediated activation of IGF-1R/PI3K/Akt system, suggesting that suppression of miR-455-5p or activation of DAG may be potential targets for T2DM therapy.
文摘旨在证明miR-324-3p可以通过调控其预测的靶基因MC1R及其下游基因的表达从而对羊驼皮肤黑色素的合成产生影响。本研究在体外培养的羊驼皮肤黑色素细胞中转染miR-324-3p过表达载体,应用qRT-PCR与Western blotting分析比较各试验组中MC1R基因与毛色相关基因小眼畸形相关转录因子(Microphthalmia-associtated transcription factor,Mitf)、酪氨酸酶(Tyrosinase,Tyr)、酪氨酸相关蛋白2(Tyrosinase related protein 2,Tyrp2)的表达差异性,利用酶标仪检测黑色素产量的变化。结果显示:(1)miR-324-3p在棕色与白色羊驼皮肤中均有表达,且在棕色羊驼皮肤中极显著表达(P<0.01),其相对表达量是白色的1.64倍;(2)黑色素细胞被转染了miR-324-3p过表达载体后,处理组靶基因MC1R及其下游调控基因Mitf、Tyr和Tyrp2的表达量与黑色素产量较空白对照组均有下调,且以Mitf基因表达量极显著下调(P<0.01)。综上表明,羊驼皮肤中miR-324-3p可能通过调控MC1R基因的表达,顺势下调MC1R基因下游调控基因Mitf、Tyr与Tyrp2的表达,最终对羊驼皮肤黑色素细胞中黑色素的类型及合成量产生影响。