This paper presents a study on the numerical simulation of planing crafts sailing in regular waves. This allows an accurate estimate of the seas keeping performance of the high speed craft. The simulation set in six-d...This paper presents a study on the numerical simulation of planing crafts sailing in regular waves. This allows an accurate estimate of the seas keeping performance of the high speed craft. The simulation set in six-degree of freedom motions is based on the Reynolds averaged Navier Stokes equations volume of fluid (RANSE VOF) solver. The trimming mesh technique and integral dynamic mesh method are used to guarantee the good accuracy of the hydrodynamic force and high efficiency of the numerical simulation. Incident head waves, oblique waves and beam waves are generated in the simulation with three different velocities (Fn =1.0, 1.5, 2.0). The motions and sea keeping performance of the planing craft with waves coming from different directions are indicated in the flow solver. The ship designer placed an emphasis on the effects of waves on sailing amplitude and pressure distribution of planing craft in the configuration of building high speed crafts.展开更多
In this study,the performance of a twin-screw propeller under the influence of the wake field of a fully appended ship was investigated using a coupled Reynolds-averaged Navier–Stokes(RANS)/boundary element method(BE...In this study,the performance of a twin-screw propeller under the influence of the wake field of a fully appended ship was investigated using a coupled Reynolds-averaged Navier–Stokes(RANS)/boundary element method(BEM)code.The unsteady BEM is an efficient approach to predicting propeller performance.By applying the time-stepping method in the BEM solver,the trailing vortex sheet pattern of the propeller can be accurately captured at each time step.This is the main innovation of the coupled strategy.Furthermore,to ascertain the effect of the wake field of the ship with acceptable accuracy,a RANS solver was developed.A finite volume method was used to discretize the Navier–Stokes equations on fully unstructured grids.To simulate ship motions,the volume of the fluid method was applied to the RANS solver.The validation of each solver(BEM/RANS)was separately performed,and the results were compared with experimental data.Ultimately,the BEM and RANS solvers were coupled to estimate the performance of a twin-screw propeller,which was affected by the wake field of the fully appended hull.The proposed model was applied to a twin-screw oceanography research vessel.The results demonstrated that the presented model can estimate the thrust coefficient of a propeller with good accuracy as compared to an experimental self-propulsion test.The wake sheet pattern of the propeller in open water(uniform flow)was also compared with the propeller in a real wake field.展开更多
Oscillatory turbulent flow over a flat plate was studied by using large eddy simulation (LES) and Reynolds-average Navier-Stokes (RANS) methods. A dynamic subgrid-scale model was employed in LES and Saffman's tur...Oscillatory turbulent flow over a flat plate was studied by using large eddy simulation (LES) and Reynolds-average Navier-Stokes (RANS) methods. A dynamic subgrid-scale model was employed in LES and Saffman's turbulence model was used in RANS. The flow behaviors were discussed for the accelerating and decelerating phases during the oscillating cycle. The friction force on the wall and its phase shift from laminar to turbulent regime were also investigated for different Reynolds numbers. (Edited author abstract) 11 Refs.展开更多
Environmental effects have an important influence on Offshore Wind Turbine (OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element (BEM)-panM...Environmental effects have an important influence on Offshore Wind Turbine (OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element (BEM)-panMARE code-to simulate the unsteady flow behavior of a full OWT with various combinations of aerodynamic and hydrodynamic loads in the time domain. This code is implemented to simulate potential flows for different applications and is based on a three-dimensional first-order panel method. Three different OWT configurations consisting of a generic 5 MW NREL rotor with three different types of foundations (Monopile, Tripod, and Jacket) are investigated. These three configurations are analyzed using the RANSE solver which is carried out using ANSYS CFX for validating the corresponding results. The simulations are performed under the same environmental atmospheric wind shear and rotor angular velocity, and the wave properties are wave height of 4 m and wave period of 7.16 s. In the present work, wave environmental effects were investigated firstly for the two solvers, and good agreement is achieved. Moreover, pressure distribution in each OWT case is presented, including detailed information about local flow fields. The time history of the forces at inflow direction and its moments around the mudline at each OWT part are presented in a dimensionless form with respect to the mean value of the last three loads and the moment amplitudes obtained from the BEM code, where the contribution of rotor force is lower in the tripod case and higher in the jacket case and the calculated hydrodynamic load that effect on jacket foundation type is lower than other two cases.展开更多
In this paper,we present our analysis of the non-cavitating and cavitating unsteady performances of the Potsdam Propeller Test Case(PPTC)in oblique flow.For our calculations,we used the Reynolds-averaged Navier-Stokes...In this paper,we present our analysis of the non-cavitating and cavitating unsteady performances of the Potsdam Propeller Test Case(PPTC)in oblique flow.For our calculations,we used the Reynolds-averaged Navier-Stokes equation(RANSE)solver from the open-source OpenFOAM libraries.We selected the homogeneous mixture approach to solve for multiphase flow with phase change,using the volume of fluid(VoF)approach to solve the multiphase flow and modeling the mass transfer between vapor and water with the Schnerr-Sauer model.Comparing the model results with the experimental measurements collected during the SecondWorkshop on Cavitation and Propeller Performance– SMP’15 enabled our assessment of the reliability of the open-source calculations.Comparisons with the numerical data collected during the workshop enabled further analysis of the reliability of different flow solvers from which we produced an overview of recommended guidelines(mesh arrangements and solver setups)for accurate numerical prediction even in off-design conditions.Lastly,we propose a number of calculations using the boundary element method developed at the University of Genoa for assessing the reliability of this dated but still widely adopted approach for design and optimization in the preliminary stages of very demanding test cases.展开更多
A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The deve...A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.展开更多
Reynolds-Averaged Navier-Stokes(RANS) Computational Fluid Dynamics(CFD) has been widely used in compressor design and analysis. However, reasonable prediction of compressor flow and its impact on compressor performanc...Reynolds-Averaged Navier-Stokes(RANS) Computational Fluid Dynamics(CFD) has been widely used in compressor design and analysis. However, reasonable prediction of compressor flow and its impact on compressor performance remains challenging. In this study, Menter’s Shear Stress Transport(SST) model and its variants, as well as the ω-based Reynolds stress model(Stress-BSL) are assessed. For a single rotor(Rotor 67), under the peak efficiency operating condition, all studied turbulence models predict its performance with reasonable accuracy;under the off-design conditions, SST with Helicity correction(SST-Helicity) shows superiority in predicting the effect of flow on the spanwise distribution of aerodynamic parameters. For Darmstadt’s 1.5-stage transonic axial compressor, SST-Helicity outperforms SST, SST with the Quadratic Constitutive Relation(SST-QCR) and Stress-BSL in predicting the performance as well as the spanwise distribution of aerodynamic parameters. At the design rotating speed, the stall margin given by SST-Helicity(20.90%) is the closest to the experimental measurement(24.81%), which is more than twice that by SST(8.71%) and 1.5 times that by SST-QCR(14.14%). This paper demonstrates that SSTHelicity model, together with a good quality and sufficiently refined grid, can capture the compressor flow features with reasonable accuracy, which results in a credible prediction of compressor performance and stage matching.展开更多
Interaction between the injected flow from the porous wall and the main flow can reduce drag effectively.The phenomenon is significant to the flight vehicle design.The intensive flux of injection enhances difficulty o...Interaction between the injected flow from the porous wall and the main flow can reduce drag effectively.The phenomenon is significant to the flight vehicle design.The intensive flux of injection enhances difficulty of numerical simulation and requires higher demands on the turbulence model.A turbulent boundary layer flow with mass injection through a porous wall governed by Reynolds averaged Navier-Stokers(RANS)equations is solved by using the Wilcox′s k-ωturbulence model and the obtained resistance coefficient agrees well with the experimental data.The results with and without mass injection are compared with other conditions unchanged.Velocity profile,turbulent kinetic energy and turbulent eddy viscosity are studied in these two cases.Results confirm that the boundary layer is blowing up and the turbulence is better developed with the aid of mass injection,which may explain the drag reduction theoretically.This numerical simulation may deepen our comprehension on this complex flow.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 551009038 and the specialized research fund for the doctoral program of higher education under Grant No. 200802170010
文摘This paper presents a study on the numerical simulation of planing crafts sailing in regular waves. This allows an accurate estimate of the seas keeping performance of the high speed craft. The simulation set in six-degree of freedom motions is based on the Reynolds averaged Navier Stokes equations volume of fluid (RANSE VOF) solver. The trimming mesh technique and integral dynamic mesh method are used to guarantee the good accuracy of the hydrodynamic force and high efficiency of the numerical simulation. Incident head waves, oblique waves and beam waves are generated in the simulation with three different velocities (Fn =1.0, 1.5, 2.0). The motions and sea keeping performance of the planing craft with waves coming from different directions are indicated in the flow solver. The ship designer placed an emphasis on the effects of waves on sailing amplitude and pressure distribution of planing craft in the configuration of building high speed crafts.
文摘In this study,the performance of a twin-screw propeller under the influence of the wake field of a fully appended ship was investigated using a coupled Reynolds-averaged Navier–Stokes(RANS)/boundary element method(BEM)code.The unsteady BEM is an efficient approach to predicting propeller performance.By applying the time-stepping method in the BEM solver,the trailing vortex sheet pattern of the propeller can be accurately captured at each time step.This is the main innovation of the coupled strategy.Furthermore,to ascertain the effect of the wake field of the ship with acceptable accuracy,a RANS solver was developed.A finite volume method was used to discretize the Navier–Stokes equations on fully unstructured grids.To simulate ship motions,the volume of the fluid method was applied to the RANS solver.The validation of each solver(BEM/RANS)was separately performed,and the results were compared with experimental data.Ultimately,the BEM and RANS solvers were coupled to estimate the performance of a twin-screw propeller,which was affected by the wake field of the fully appended hull.The proposed model was applied to a twin-screw oceanography research vessel.The results demonstrated that the presented model can estimate the thrust coefficient of a propeller with good accuracy as compared to an experimental self-propulsion test.The wake sheet pattern of the propeller in open water(uniform flow)was also compared with the propeller in a real wake field.
基金The project supported by the Youngster Funding of Academia Sinica and by the National Natural Science Foundation of China
文摘Oscillatory turbulent flow over a flat plate was studied by using large eddy simulation (LES) and Reynolds-average Navier-Stokes (RANS) methods. A dynamic subgrid-scale model was employed in LES and Saffman's turbulence model was used in RANS. The flow behaviors were discussed for the accelerating and decelerating phases during the oscillating cycle. The friction force on the wall and its phase shift from laminar to turbulent regime were also investigated for different Reynolds numbers. (Edited author abstract) 11 Refs.
文摘Environmental effects have an important influence on Offshore Wind Turbine (OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element (BEM)-panMARE code-to simulate the unsteady flow behavior of a full OWT with various combinations of aerodynamic and hydrodynamic loads in the time domain. This code is implemented to simulate potential flows for different applications and is based on a three-dimensional first-order panel method. Three different OWT configurations consisting of a generic 5 MW NREL rotor with three different types of foundations (Monopile, Tripod, and Jacket) are investigated. These three configurations are analyzed using the RANSE solver which is carried out using ANSYS CFX for validating the corresponding results. The simulations are performed under the same environmental atmospheric wind shear and rotor angular velocity, and the wave properties are wave height of 4 m and wave period of 7.16 s. In the present work, wave environmental effects were investigated firstly for the two solvers, and good agreement is achieved. Moreover, pressure distribution in each OWT case is presented, including detailed information about local flow fields. The time history of the forces at inflow direction and its moments around the mudline at each OWT part are presented in a dimensionless form with respect to the mean value of the last three loads and the moment amplitudes obtained from the BEM code, where the contribution of rotor force is lower in the tripod case and higher in the jacket case and the calculated hydrodynamic load that effect on jacket foundation type is lower than other two cases.
文摘In this paper,we present our analysis of the non-cavitating and cavitating unsteady performances of the Potsdam Propeller Test Case(PPTC)in oblique flow.For our calculations,we used the Reynolds-averaged Navier-Stokes equation(RANSE)solver from the open-source OpenFOAM libraries.We selected the homogeneous mixture approach to solve for multiphase flow with phase change,using the volume of fluid(VoF)approach to solve the multiphase flow and modeling the mass transfer between vapor and water with the Schnerr-Sauer model.Comparing the model results with the experimental measurements collected during the SecondWorkshop on Cavitation and Propeller Performance– SMP’15 enabled our assessment of the reliability of the open-source calculations.Comparisons with the numerical data collected during the workshop enabled further analysis of the reliability of different flow solvers from which we produced an overview of recommended guidelines(mesh arrangements and solver setups)for accurate numerical prediction even in off-design conditions.Lastly,we propose a number of calculations using the boundary element method developed at the University of Genoa for assessing the reliability of this dated but still widely adopted approach for design and optimization in the preliminary stages of very demanding test cases.
基金financially supported by the National Natural Science Foundation of China(Grant No.51009090)the State Key Laboratory of Ocean Engineering(Grant No.GKZD010063)
文摘A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.
文摘Reynolds-Averaged Navier-Stokes(RANS) Computational Fluid Dynamics(CFD) has been widely used in compressor design and analysis. However, reasonable prediction of compressor flow and its impact on compressor performance remains challenging. In this study, Menter’s Shear Stress Transport(SST) model and its variants, as well as the ω-based Reynolds stress model(Stress-BSL) are assessed. For a single rotor(Rotor 67), under the peak efficiency operating condition, all studied turbulence models predict its performance with reasonable accuracy;under the off-design conditions, SST with Helicity correction(SST-Helicity) shows superiority in predicting the effect of flow on the spanwise distribution of aerodynamic parameters. For Darmstadt’s 1.5-stage transonic axial compressor, SST-Helicity outperforms SST, SST with the Quadratic Constitutive Relation(SST-QCR) and Stress-BSL in predicting the performance as well as the spanwise distribution of aerodynamic parameters. At the design rotating speed, the stall margin given by SST-Helicity(20.90%) is the closest to the experimental measurement(24.81%), which is more than twice that by SST(8.71%) and 1.5 times that by SST-QCR(14.14%). This paper demonstrates that SSTHelicity model, together with a good quality and sufficiently refined grid, can capture the compressor flow features with reasonable accuracy, which results in a credible prediction of compressor performance and stage matching.
基金supported by the National Natural Science Foundation of China (Nos.51309040,51209027, 51379025,51379033)the Open Research Fund of State Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University,No.1402)+2 种基金the Young Teachers Academic Program of SWPU (No.201499010114)the Central Financial Support of Local Key Discipline Youth Fund Project (YC319)the Fundamental Research Fund for the Central Universities(No.DMU3132015089)
文摘Interaction between the injected flow from the porous wall and the main flow can reduce drag effectively.The phenomenon is significant to the flight vehicle design.The intensive flux of injection enhances difficulty of numerical simulation and requires higher demands on the turbulence model.A turbulent boundary layer flow with mass injection through a porous wall governed by Reynolds averaged Navier-Stokers(RANS)equations is solved by using the Wilcox′s k-ωturbulence model and the obtained resistance coefficient agrees well with the experimental data.The results with and without mass injection are compared with other conditions unchanged.Velocity profile,turbulent kinetic energy and turbulent eddy viscosity are studied in these two cases.Results confirm that the boundary layer is blowing up and the turbulence is better developed with the aid of mass injection,which may explain the drag reduction theoretically.This numerical simulation may deepen our comprehension on this complex flow.