In an acetic acid–sodium acetate buffer solution of pH 3.6–6.8, a compound complex was formed between sodium hyaluronate (abbreviated as SH) and some basic bisphenylnaphthylmethane dyes, leading to a great enhanceme...In an acetic acid–sodium acetate buffer solution of pH 3.6–6.8, a compound complex was formed between sodium hyaluronate (abbreviated as SH) and some basic bisphenylnaphthylmethane dyes, leading to a great enhancement of the intensity of resonance Rayleigh scattering (RRS) and giving a new RRS spectrum, with its maximum scattering peak near 280 nm. It was also found that the intensity of RRS was directly proportional to the concentration of SH near the range between 0 and 3.0 mg/L. Based on these facts, a sensitive method for the determination of SH has been established. The method had good selectivity, and has been used for the determination of total amounts of SH in samples with satisfactory results. For the NB–SH system, the detection limit of SH was down to 13.7 ng/mL.展开更多
IEEE 1012 [1] describes the SDLC phase activities for software independent verification and validation (IV & V) for nuclear power plant in truly general and conceptual manner, which requires the upward and/or down...IEEE 1012 [1] describes the SDLC phase activities for software independent verification and validation (IV & V) for nuclear power plant in truly general and conceptual manner, which requires the upward and/or downward tailoring on its interpretation for practical IV & V. It contains crucial and encompassing check points and guidelines to analyze the design integrity, without addressing the formalized and the specific criteria for IV & V activities confirming the technical integrity. It is necessary to list up the inspection viewpoint via interpretation of the standard that is practical review points checking design consistency. For fruitful IV & V of Control Element Driving Mechanism Control System (CEDMCS) software for Yonggwang Nuclear Power Plant unit 3 & 4, the specific viewpoints and approach are necessary based on the guidelines of IEEE 1012 to enhance the system quality by considering the level of implementation of the theoretical and the practical IV & V. Additionally IV & V guideline of IEEE 1012 does not specifically provide the concrete measure considering the system characteristics of CEDMCS. This paper provides the seven (7) characteristic criteria for CEDMCS IV & V, and by applying these viewpoints, the design analysis such as function, performance, interface and exception, backward and forward requirement traceability analysis has been conducted. The requirement, design, implementation, and test phase were only considered for IV & V in this project. This article also provides the translation of code to map theoretical verification and validation into practical verification and validation. This paper emphasizes the necessity of the intensive design inspection and walkthrough for requirement phase to resolve the design faults because the IV & V of early phase of SDLC obviously contributes to find out most of critical design inconsistency. Especially for test phase IV & V, it is strongly recommended to prepare the test plan document which is going to be the basis for the test coverage selection and test strategy. This test plan document should be based on the critical characteristics of function and performance of CEDMCS. Also to guarantee the independency of V & V organization participating in this project, and to acquire the full package of design details for IV & V, the systematic approach and efforts with an aspect of management is highlighted among the participants.展开更多
目的:建立共振瑞利散射法测定大黄素的含量。方法:在p H 7.3的B-R缓冲溶液中,铁(Ⅱ)与1,10-邻菲啰啉形成稳定的1∶3的配合物,再与大黄素(EMO)结合形成1∶2的离子缔合物。铁(Ⅱ)-1,10-邻菲啰啉溶液:称取0.278 0 g Fe SO4·7...目的:建立共振瑞利散射法测定大黄素的含量。方法:在p H 7.3的B-R缓冲溶液中,铁(Ⅱ)与1,10-邻菲啰啉形成稳定的1∶3的配合物,再与大黄素(EMO)结合形成1∶2的离子缔合物。铁(Ⅱ)-1,10-邻菲啰啉溶液:称取0.278 0 g Fe SO4·7H2O溶于70 m L水中,加入邻菲啰啉(1,10-phen)0.595 0 g,加入适量的抗坏血酸,稀释至100 m L,得到1×10^-2mol·L^-1的储备液,用时稀释成2.0×10^-3mol·L^-1的工作液。室温下,于10 m L比色管中依次加入p H 7.3的B-R缓冲溶液2 m L,适量的EMO标准溶液,以及2.0×10^-3mol·L^-1Fe(phen)2+3溶液1.2 m L。每加一种试剂后混合均匀,用二次蒸馏水定容至刻度,摇匀,静置10 min后,在荧光分光光度计上以λex=λem方式进行同步扫描,记录共振瑞利散射(RRS)光谱,以λem=2λex和λem=1/2λex进行扫描,分别测量不同入射波长(λex)下的散射强度ISOS和IFDS,然后分别以ISOS和IFDS对应的波长作图,得到二级散射(SOS)光谱和倍频散射(FDS)光谱。分别在各自的最大散射波长处测量样品和试剂空白的散射强度IRRS,ISOS,IFDS及I0RRS,I0SOS,I0FDS,ΔI=I-I0。结果:体系的RRS、SOS和FDS显著增强并出现新的散射峰,相应的最大散射峰分别位于349、684和351 nm。EMO的质量浓度在0.8-10.4μg·m L-1时,与RRS、SOS和FDS的散射强度呈良好的线性关系,其检出限(3σ)依次分别为10.1、32.8、28.6 ng·m L^-1。血样和尿样(各3批)中测定EMO的回收率分别在94.9%-102.4%和99.4%-102.7%之间,RSD分别在1.5%-3.1%和1.1%-3.0%之间。将本法与紫外可见分光光度法比较,结果满意。结论:经方法学验证,体系的共振瑞利散射方法可用于尿样和血清中大黄素的测定。展开更多
文摘In an acetic acid–sodium acetate buffer solution of pH 3.6–6.8, a compound complex was formed between sodium hyaluronate (abbreviated as SH) and some basic bisphenylnaphthylmethane dyes, leading to a great enhancement of the intensity of resonance Rayleigh scattering (RRS) and giving a new RRS spectrum, with its maximum scattering peak near 280 nm. It was also found that the intensity of RRS was directly proportional to the concentration of SH near the range between 0 and 3.0 mg/L. Based on these facts, a sensitive method for the determination of SH has been established. The method had good selectivity, and has been used for the determination of total amounts of SH in samples with satisfactory results. For the NB–SH system, the detection limit of SH was down to 13.7 ng/mL.
文摘IEEE 1012 [1] describes the SDLC phase activities for software independent verification and validation (IV & V) for nuclear power plant in truly general and conceptual manner, which requires the upward and/or downward tailoring on its interpretation for practical IV & V. It contains crucial and encompassing check points and guidelines to analyze the design integrity, without addressing the formalized and the specific criteria for IV & V activities confirming the technical integrity. It is necessary to list up the inspection viewpoint via interpretation of the standard that is practical review points checking design consistency. For fruitful IV & V of Control Element Driving Mechanism Control System (CEDMCS) software for Yonggwang Nuclear Power Plant unit 3 & 4, the specific viewpoints and approach are necessary based on the guidelines of IEEE 1012 to enhance the system quality by considering the level of implementation of the theoretical and the practical IV & V. Additionally IV & V guideline of IEEE 1012 does not specifically provide the concrete measure considering the system characteristics of CEDMCS. This paper provides the seven (7) characteristic criteria for CEDMCS IV & V, and by applying these viewpoints, the design analysis such as function, performance, interface and exception, backward and forward requirement traceability analysis has been conducted. The requirement, design, implementation, and test phase were only considered for IV & V in this project. This article also provides the translation of code to map theoretical verification and validation into practical verification and validation. This paper emphasizes the necessity of the intensive design inspection and walkthrough for requirement phase to resolve the design faults because the IV & V of early phase of SDLC obviously contributes to find out most of critical design inconsistency. Especially for test phase IV & V, it is strongly recommended to prepare the test plan document which is going to be the basis for the test coverage selection and test strategy. This test plan document should be based on the critical characteristics of function and performance of CEDMCS. Also to guarantee the independency of V & V organization participating in this project, and to acquire the full package of design details for IV & V, the systematic approach and efforts with an aspect of management is highlighted among the participants.
文摘目的:建立共振瑞利散射法测定大黄素的含量。方法:在p H 7.3的B-R缓冲溶液中,铁(Ⅱ)与1,10-邻菲啰啉形成稳定的1∶3的配合物,再与大黄素(EMO)结合形成1∶2的离子缔合物。铁(Ⅱ)-1,10-邻菲啰啉溶液:称取0.278 0 g Fe SO4·7H2O溶于70 m L水中,加入邻菲啰啉(1,10-phen)0.595 0 g,加入适量的抗坏血酸,稀释至100 m L,得到1×10^-2mol·L^-1的储备液,用时稀释成2.0×10^-3mol·L^-1的工作液。室温下,于10 m L比色管中依次加入p H 7.3的B-R缓冲溶液2 m L,适量的EMO标准溶液,以及2.0×10^-3mol·L^-1Fe(phen)2+3溶液1.2 m L。每加一种试剂后混合均匀,用二次蒸馏水定容至刻度,摇匀,静置10 min后,在荧光分光光度计上以λex=λem方式进行同步扫描,记录共振瑞利散射(RRS)光谱,以λem=2λex和λem=1/2λex进行扫描,分别测量不同入射波长(λex)下的散射强度ISOS和IFDS,然后分别以ISOS和IFDS对应的波长作图,得到二级散射(SOS)光谱和倍频散射(FDS)光谱。分别在各自的最大散射波长处测量样品和试剂空白的散射强度IRRS,ISOS,IFDS及I0RRS,I0SOS,I0FDS,ΔI=I-I0。结果:体系的RRS、SOS和FDS显著增强并出现新的散射峰,相应的最大散射峰分别位于349、684和351 nm。EMO的质量浓度在0.8-10.4μg·m L-1时,与RRS、SOS和FDS的散射强度呈良好的线性关系,其检出限(3σ)依次分别为10.1、32.8、28.6 ng·m L^-1。血样和尿样(各3批)中测定EMO的回收率分别在94.9%-102.4%和99.4%-102.7%之间,RSD分别在1.5%-3.1%和1.1%-3.0%之间。将本法与紫外可见分光光度法比较,结果满意。结论:经方法学验证,体系的共振瑞利散射方法可用于尿样和血清中大黄素的测定。