Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme hetero...Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.展开更多
Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental,medical,and...Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental,medical,and energy applications.Recently,the construction of a step-scheme heterostructure system(hereafter called the S-scheme)has received widespread attention in the photocatalytic field due to its ability to achieve efficient photogenerated carrier separation and obtain strong photo-redox ability.Herein,a novel S-scheme heterojunction system consisting of 2D O-doped g-C_(3)N_(4)(OCN)nanosheets and 3D N-doped Nb_(2)O_(5)/C(N-NBO/C)nanoflowers is constructed via ultrasonication and vigorous agitation technique followed by heat treatment for the photocatalytic degradation of Rhodamine B(RhB).Detailed characterization and decomposition behaviour of RhB showed that the fabricated material shows excellent photocatalytic efficiency and stability towards RhB photodegradation under visible-light illumination.The enhanced performance could be attributed to the following factors:fast charge transfer,highly-efficient charge separation,extended lifetime of photoinduced charge carriers,and the high redox capability of the photoinduced charges in the S-scheme system.Various trapping experiment conditions and electron paramagnetic resonance provide clear evidence of the S-scheme photogenerated charge transfer path,meanwhile,the RhB mineralization degradation pathway was also investigated using LC-MS.This study presents an approach to constructing Nb_(2)O_(5)-based S-scheme heterojunctions for photocatalytic applications.展开更多
The Pamir plateau may have been a westward continuation of Tibet plateau.Meanwhile,the Rushan-Pshart suture is correlative to the Bangong-Nujiang suture of Tibet,and the Central Pamir is the lateral equivalent of the ...The Pamir plateau may have been a westward continuation of Tibet plateau.Meanwhile,the Rushan-Pshart suture is correlative to the Bangong-Nujiang suture of Tibet,and the Central Pamir is the lateral equivalent of the Qiangtang Block.We present the first detailed LA-ICPMS zircon U-Pb chronology,major and trace element,and Lu-Hf isotope geochemistry of Taxkorgan two-mica monzogranite to illuminate the Tethys evolution in central Pamir.LA-ICPMS zircon U-Pb dating shows that two-mica monzogranite is emplaced in the Cretaceous(118 Ma).Its geochemical features are similar to S-type granite,with enrichment in LREEs and negative Ba,Sr,Zr and Ti anomalies.All the samples show negative zirconεHf(t)values ranging from 17.0 to 12.5(mean 14.5),corresponding to crustal Hf model(TDM2)ages of 1906 to 2169 Ma.It is inferred that these granitoids are derived from partial melting of peliticmetasedimentary rocks analogous to the Paleoproterozoic Bulunkuole Group,predominantly with muscovite schists component.Based on the petrological and geochemical data presented above,together with the regional geology,this work provides new insights that Bangong Nujiang Ocean closed in Early Cretaceous(120114 Ma).展开更多
文摘Designing a step-scheme(S-scheme)heterojunction photocatalyst with vacancy engineering is a reliable approach to achieve highly efficient photocatalytic H_(2)production activity.Herein,a hollow ZnO/ZnS S-scheme heterojunction with O and Zn vacancies(VO,Zn-ZnO/ZnS)is rationally constructed via ion-exchange and calcination treatments.In such a photocatalytic system,the hollow structure combined with the introduction of dual vacancies endows the adequate light absorption.Moreover,the O and Zn vacancies serve as the trapping sites for photo-induced electrons and holes,respectively,which are beneficial for promoting the photo-induced carrier separation.Meanwhile,the S-scheme charge transfer mechanism can not only improve the separation and transfer efficiencies of photo-induced carrier but also retain the strong redox capacity.As expected,the optimized VO,Zn-ZnO/ZnS heterojunction exhibits a superior photocatalytic H_(2) production rate of 160.91 mmol g^(-1)h^(-1),approximately 643.6 times and 214.5 times with respect to that obtained on pure ZnO and ZnS,respectively.Simultaneously,the experimental results and density functional theory calculations disclose that the photo-induced carrier transfer pathway follows the S-scheme heterojunction mechanism and the introduction of O and Zn vacancies reduces the surface reaction barrier.This work provides an innovative strategy of vacancy engineering in S-scheme heterojunction for solar-to-fuel energy conversion.
文摘Constructing a suitable heterojunction photocatalytic system from two photocatalytic materials is an efficient approach for designing extremely efficient photocatalysts for a broader range of environmental,medical,and energy applications.Recently,the construction of a step-scheme heterostructure system(hereafter called the S-scheme)has received widespread attention in the photocatalytic field due to its ability to achieve efficient photogenerated carrier separation and obtain strong photo-redox ability.Herein,a novel S-scheme heterojunction system consisting of 2D O-doped g-C_(3)N_(4)(OCN)nanosheets and 3D N-doped Nb_(2)O_(5)/C(N-NBO/C)nanoflowers is constructed via ultrasonication and vigorous agitation technique followed by heat treatment for the photocatalytic degradation of Rhodamine B(RhB).Detailed characterization and decomposition behaviour of RhB showed that the fabricated material shows excellent photocatalytic efficiency and stability towards RhB photodegradation under visible-light illumination.The enhanced performance could be attributed to the following factors:fast charge transfer,highly-efficient charge separation,extended lifetime of photoinduced charge carriers,and the high redox capability of the photoinduced charges in the S-scheme system.Various trapping experiment conditions and electron paramagnetic resonance provide clear evidence of the S-scheme photogenerated charge transfer path,meanwhile,the RhB mineralization degradation pathway was also investigated using LC-MS.This study presents an approach to constructing Nb_(2)O_(5)-based S-scheme heterojunctions for photocatalytic applications.
基金Project(41802103)supported by the National Natural Science Foundation of ChinaProject(2017YFC0601403)supported by the National Key R&D Program of China
文摘The Pamir plateau may have been a westward continuation of Tibet plateau.Meanwhile,the Rushan-Pshart suture is correlative to the Bangong-Nujiang suture of Tibet,and the Central Pamir is the lateral equivalent of the Qiangtang Block.We present the first detailed LA-ICPMS zircon U-Pb chronology,major and trace element,and Lu-Hf isotope geochemistry of Taxkorgan two-mica monzogranite to illuminate the Tethys evolution in central Pamir.LA-ICPMS zircon U-Pb dating shows that two-mica monzogranite is emplaced in the Cretaceous(118 Ma).Its geochemical features are similar to S-type granite,with enrichment in LREEs and negative Ba,Sr,Zr and Ti anomalies.All the samples show negative zirconεHf(t)values ranging from 17.0 to 12.5(mean 14.5),corresponding to crustal Hf model(TDM2)ages of 1906 to 2169 Ma.It is inferred that these granitoids are derived from partial melting of peliticmetasedimentary rocks analogous to the Paleoproterozoic Bulunkuole Group,predominantly with muscovite schists component.Based on the petrological and geochemical data presented above,together with the regional geology,this work provides new insights that Bangong Nujiang Ocean closed in Early Cretaceous(120114 Ma).