期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
用积分方程法计算蒸汽管中存在缺陷时的阻抗平面图 被引量:3
1
作者 唐磊 盛剑霓 《电机与控制学报》 EI CSCD 1997年第3期154-158,共5页
在涡流无损评估研究中,积分方程法是计算阻抗图的一种重要方法。可是在管道结构中,积分方程法的核—其并矢格林函数的推导比较困难,使它的应用受到限制。作者首次利用二阶矢量位法导出了管道结构中涡流场的并矢格林函数。在此基础上... 在涡流无损评估研究中,积分方程法是计算阻抗图的一种重要方法。可是在管道结构中,积分方程法的核—其并矢格林函数的推导比较困难,使它的应用受到限制。作者首次利用二阶矢量位法导出了管道结构中涡流场的并矢格林函数。在此基础上,计算了一个实例。结果表明,作者采用的模型和方法是正确的。 展开更多
关键词 积分方程法 蒸汽管道 计算 阻抗平面图
下载PDF
Generalization of the Second Order Vector Potential Formulation for Arbitrary Non-Orthogonal Curvilinear Coordinates Systems from the Covariant Form of Maxwell's Equations
2
作者 Denis Prémel 《Journal of Electromagnetic Analysis and Applications》 2012年第10期400-409,共10页
A great number of semi-analytical models, notably the representation of electromagnetic fields by integral equations are based on the second order vector potential (SOVP) formalism which introduces two scalar potentia... A great number of semi-analytical models, notably the representation of electromagnetic fields by integral equations are based on the second order vector potential (SOVP) formalism which introduces two scalar potentials in order to obtain analytical expressions of the electromagnetic fields from the two potentials. However, the scalar decomposition is often known for canonical coordinate systems. This paper aims in introducing a specific SOVP formulation dedicated to arbitrary non-orthogonal curvilinear coordinates systems. The electromagnetic field representation which is derived in this paper constitutes the key stone for the development of semi-analytical models for solving some eddy currents moelling problems and electromagnetic radiation problems considering at least two homogeneous media separated by a rough interface. This SOVP formulation is derived from the tensor formalism and Maxwell’s equations written in a non-orthogonal coordinates system adapted to a surface characterized by a 2D arbitrary aperiodic profile. 展开更多
关键词 Second Order Vector Potential (sovp) Curvilinear COORDINATE System EDDY Current NON-DESTRUCTIVE Testing (ECNDT)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部