We study theoretically how to produce and detect the ultracold ground-state Cs2 molecule from Feshbach state. Nu- merical calculations are performed by solving the quantum Liouville equation based on multilevel Bloch ...We study theoretically how to produce and detect the ultracold ground-state Cs2 molecule from Feshbach state. Nu- merical calculations are performed by solving the quantum Liouville equation based on multilevel Bloch model. The producing efficiency reaches 55% and the detecting efficiency is 31%. The producing and detecting efficiencies are closely related to the Rabi frequencies of laser pulses. The decay of relevant electronic and vibrational states obviously reduces the producing and detecting efficiencies.展开更多
The technique of stimulated Raman adiabatic passage (STIRAP) is used to transfer potassium atoms from the 22p state to the 21p Rydberg state through the intermediate state 22s. The results show that complete populat...The technique of stimulated Raman adiabatic passage (STIRAP) is used to transfer potassium atoms from the 22p state to the 21p Rydberg state through the intermediate state 22s. The results show that complete population transfer is related to pulse duration and overlap, and occurs when the pulse duration and overlap have adequate values. At the same time, population trapping is also formed. Complete population transfer can also occurs when the two-photon resonance condition (△s = △p) is met.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10974024 and 11274056)
文摘We study theoretically how to produce and detect the ultracold ground-state Cs2 molecule from Feshbach state. Nu- merical calculations are performed by solving the quantum Liouville equation based on multilevel Bloch model. The producing efficiency reaches 55% and the detecting efficiency is 31%. The producing and detecting efficiencies are closely related to the Rabi frequencies of laser pulses. The decay of relevant electronic and vibrational states obviously reduces the producing and detecting efficiencies.
基金Project sapported by the National Natural Science Foundation of China (Grant No 10574096).
文摘The technique of stimulated Raman adiabatic passage (STIRAP) is used to transfer potassium atoms from the 22p state to the 21p Rydberg state through the intermediate state 22s. The results show that complete population transfer is related to pulse duration and overlap, and occurs when the pulse duration and overlap have adequate values. At the same time, population trapping is also formed. Complete population transfer can also occurs when the two-photon resonance condition (△s = △p) is met.