期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation and characterization of nano-rare earth composite materials:application in selectivity catalytic oxidation of ammonia and its cytotoxicity study 被引量:1
1
作者 Chang-Mao Hung 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第S1期362-366,共5页
The manufacture,physical characterization,environmental applications and cytotoxicity properties of nanocomposites consisting of CuO/CeO2 nano-rare earth composite materials prepared using the coprecipitation method a... The manufacture,physical characterization,environmental applications and cytotoxicity properties of nanocomposites consisting of CuO/CeO2 nano-rare earth composite materials prepared using the coprecipitation method at molar ratio of 6:4 with aqueous solutions of copper nitrate and cerium nitrate were reported.The performance of the selective catalytic oxidation of ammonia to N2(NH3-SCO) over a CuO/CeO2 nano-rare earth composite materials in a tubular fixed-bed reactor(TFBR) at temperatures from 423 to 673 K in the presence of oxygen was elucidated.The catalytic redox behavior was determined by cyclic voltammetry(CV).The nanocomposite particles were characterized by TEM,with a tiny particle size around 10 nm with high dispersion phenomena.Further,cell cytotoxicity and the percentage cell survival were determined by using 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenol)-2-(4-sulfophenyl)-2H-tetra-zolium(MTS) assay on human lung MRC-5 cell line.Experimental results showed that no apparent cytotoxicity was observed when the MRC-5 was exposed to the CuO/CeO2 nanocomposite materials. 展开更多
关键词 selective catalytic oxidation (SCO) tubular fixed-bed reactor (tfbr) AMMONIA CuO/CeO2 nanocomposite material CYTOTOXICITY rare earths
原文传递
Investigation of fluorescence characterization and electrochemical behavior on the catalysts of nanosized Pt-Rh/y-AI203 to oxidize gaseous ammonia
2
作者 Chang-Mao HUNG Wen-Liang LAI Jane-Li LIN 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2013年第3期428-434,共7页
This work describes the environmentally friendly technology for oxidation of ammonia (NH3) to form nitrogen at temperatures range from 423K to 673K by selective catalytic oxidation (SCO) over a nanosized Pt- Rh/γ... This work describes the environmentally friendly technology for oxidation of ammonia (NH3) to form nitrogen at temperatures range from 423K to 673K by selective catalytic oxidation (SCO) over a nanosized Pt- Rh/γ-A12O3 catalyst prepared by the incipient wetness impregnation method of hexachloroplatinic acid (H2PtC16) and rhodium (Ⅲ) nitrate (Rh(NO3)3) with γ-A12O3 in a tubular fixed-bed flow quartz reactor (TFBR). The characterization of catalysts were thoroughly measured using transmission electron microscopy (TEM), three- dimensional excitation-emission fluorescent matrix (EEFM) spectroscopy, UV-Vis absorption, dynamic light- scattering (DLS), zeta potential meter, and cyclic voltam- metry (CV). The results demonstrated that at a temperature of 673K and an oxygen content of4%, approximately 99% of the NH3 was removed by catalytic oxidation over the nanosized Pt-Rh/γ-A12O3 catalyst. N2 was the main product in NH3-SCO process. Further, it reveals that the oxidation of NH3 was proceeds by the over-oxidation of NH3 into NO, which was conversely reacted with the NH3 to yield N2. Therefore, the application ofnanosized Pt-Rh/γ-A12O3 catalyst can significantly enhance the catalytic activity toward NH3 oxidation. One fluorescent peak for fresh catalyst was different with that of exhausted catalyst. It indicates that EEFM spectroscopy was proven to be an appropriate and effective method to characterize the Pt clusters in intrinsic emission from nanosized Pt-Rh/γ-A12O3 catalyst. Results obtained from the CV may explain the significant catalytic activity of the catalysts. 展开更多
关键词 ammonia (NH3) nanosized Pt- Rh/γ-A12O3catalyst excitation-emission fluorescent matrix (EEFM) selective catalytic oxidation (SCO) tubular fixed-bedreactor tfbr
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部