The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under...The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under N2/Ar atmosphere.By varying the sputtering current of the AlSi target in the range of 0-2.5 A,both the Al and Si contents in the films increased gradually from 0 to 19.1% and 11.1% (mole fraction),respectively.The influences of the AlSi cathode DC pulse current on the microstructure,phase constituents,mechanical properties,and oxidation behaviors of the Cr-Al-Si-N films were investigated systematically.The results indicate that the as-deposited Cr-Al-Si-N films possess the typical nanocomposite structure,namely the face centered cubic (Cr,Al)N nano-crystallites are embedded in the amorphous Si3N4 matrix.With increasing the Al and Si contents,the hardness of the film first increases from 20.8 GPa for the CrN film to the peak value of 29.4 GPa for the Cr0.23Al0.14Si0.07 N film,and then decreases gradually.In the meanwhile,the Cr0.23Al0.14Si0.07N film also possesses excellent high-temperature oxidation resistance that is much better than that of the CrN film at 900 or 1000 °C.展开更多
Pseudobinary Ti 1 x Al x N films were synthesized on Si (100) wafer by DC magnetron sputtering method using Ti 1 x Al x alloy targets with different Al contents. The composition of the Ti 1 x Al x N films was determin...Pseudobinary Ti 1 x Al x N films were synthesized on Si (100) wafer by DC magnetron sputtering method using Ti 1 x Al x alloy targets with different Al contents. The composition of the Ti 1 x Al x N films was determined by electron probe microanalysis (EPMA). Structural characteristic was performed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). First principles virtual crystal calculations for the Ti 1 x Al x N disordered alloys were used for the XRD simulations. The crystalline structure of the Ti 0.61 Al 0.39 N film was found to be a metastable single phase with NaCl (B1) structure. Its lattice constant, determined by XRD, was less than that of pure TiN. With the increase of Al content, the lattice constant of B1 phase was continually decreased, while würtzite (B4) structure was observed in the Ti 0.40 Al 0.60 N film. When x reached 0.75, the B1 phase disappeared, and only B4 phase was remained. The critical Al content for the phase transition from NaCl to würtzite structure in this paper was about 0.60, which could be explained by both the thermodynamic model and the electron theory. As-deposited Ti 1 x Al x N films exhibited excellent mechanical properties. Hardness measurements of Ti 1 x Al x N films showed a high value of 45GPa for x=0.39 and was decreased to value of 27 GPa with increasing Al at x=0.60.展开更多
基金supported by a 2-Year Research Grant of Pusan National University,Korea
文摘The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under N2/Ar atmosphere.By varying the sputtering current of the AlSi target in the range of 0-2.5 A,both the Al and Si contents in the films increased gradually from 0 to 19.1% and 11.1% (mole fraction),respectively.The influences of the AlSi cathode DC pulse current on the microstructure,phase constituents,mechanical properties,and oxidation behaviors of the Cr-Al-Si-N films were investigated systematically.The results indicate that the as-deposited Cr-Al-Si-N films possess the typical nanocomposite structure,namely the face centered cubic (Cr,Al)N nano-crystallites are embedded in the amorphous Si3N4 matrix.With increasing the Al and Si contents,the hardness of the film first increases from 20.8 GPa for the CrN film to the peak value of 29.4 GPa for the Cr0.23Al0.14Si0.07 N film,and then decreases gradually.In the meanwhile,the Cr0.23Al0.14Si0.07N film also possesses excellent high-temperature oxidation resistance that is much better than that of the CrN film at 900 or 1000 °C.
基金supported by "University Innovation and Research Training Program (China)" (No. 2009003)the Natural Science Foundation of Jiangsu Province (No.BK2011252)the Industry Science and Technology Supported Plan of Changzhou (No. CE20110012)
文摘Pseudobinary Ti 1 x Al x N films were synthesized on Si (100) wafer by DC magnetron sputtering method using Ti 1 x Al x alloy targets with different Al contents. The composition of the Ti 1 x Al x N films was determined by electron probe microanalysis (EPMA). Structural characteristic was performed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). First principles virtual crystal calculations for the Ti 1 x Al x N disordered alloys were used for the XRD simulations. The crystalline structure of the Ti 0.61 Al 0.39 N film was found to be a metastable single phase with NaCl (B1) structure. Its lattice constant, determined by XRD, was less than that of pure TiN. With the increase of Al content, the lattice constant of B1 phase was continually decreased, while würtzite (B4) structure was observed in the Ti 0.40 Al 0.60 N film. When x reached 0.75, the B1 phase disappeared, and only B4 phase was remained. The critical Al content for the phase transition from NaCl to würtzite structure in this paper was about 0.60, which could be explained by both the thermodynamic model and the electron theory. As-deposited Ti 1 x Al x N films exhibited excellent mechanical properties. Hardness measurements of Ti 1 x Al x N films showed a high value of 45GPa for x=0.39 and was decreased to value of 27 GPa with increasing Al at x=0.60.