Multi-component solid solutions with non-stoichiometric compositions are characteristics of ultra-high temperature carbides as promising materials for hypersonic vehicles.However,for group IV transition-metal carbides...Multi-component solid solutions with non-stoichiometric compositions are characteristics of ultra-high temperature carbides as promising materials for hypersonic vehicles.However,for group IV transition-metal carbides,the oxidation behavior of multi-component non-stoichiometric(Zr,Hf,Ti)C_(x)carbide solid solution has not been clarified yet.The present work fabricated four kinds of(Zr,Hf,Ti)C_(x)carbide solid solution powders by free-pressureless spark plasma sintering to investigate the oxidation behavior of(Zr,Hf,Ti)C_(x)in air.The effects of metallic atom composition on oxidation resistance were examined.The results indicate that the oxidation kinetics of(Zr,Hf,Ti)C_(x)are composition dependent.A high Hf content in(Zr,Hf,Ti)C_(x)was beneficial to form an amorphous Zr-Hf-Ti-C-0 oxycarbide layer as an oxygen barrier to enhance the initial oxidation resistance.Meanwhile,an equiatomic ratio of metallic atoms reduced the growth rate of(Zr,Hf,Ti)O_(2)oxide,increasing its phase stability at high temperatures,which improved the oxidation activation energy of(Zr,Hf,Ti)C_(x).展开更多
基金supported by the National Natural Science Foundation of China(Nos.51602349 and 5207021797)the Fundamental Research Funds for the Central Universities,the Key Research and Development(R&D)Program in Hunan Province Science and Technology Department(No.2018GK2061)the Innovation-drive Project of Central South University.
文摘Multi-component solid solutions with non-stoichiometric compositions are characteristics of ultra-high temperature carbides as promising materials for hypersonic vehicles.However,for group IV transition-metal carbides,the oxidation behavior of multi-component non-stoichiometric(Zr,Hf,Ti)C_(x)carbide solid solution has not been clarified yet.The present work fabricated four kinds of(Zr,Hf,Ti)C_(x)carbide solid solution powders by free-pressureless spark plasma sintering to investigate the oxidation behavior of(Zr,Hf,Ti)C_(x)in air.The effects of metallic atom composition on oxidation resistance were examined.The results indicate that the oxidation kinetics of(Zr,Hf,Ti)C_(x)are composition dependent.A high Hf content in(Zr,Hf,Ti)C_(x)was beneficial to form an amorphous Zr-Hf-Ti-C-0 oxycarbide layer as an oxygen barrier to enhance the initial oxidation resistance.Meanwhile,an equiatomic ratio of metallic atoms reduced the growth rate of(Zr,Hf,Ti)O_(2)oxide,increasing its phase stability at high temperatures,which improved the oxidation activation energy of(Zr,Hf,Ti)C_(x).