UN燃料具有铀密度高、熔点高、热导率高、热膨胀系数低、辐照稳定性好等优点,是未来空间核电源、核火箭、快堆和ADS的重要候选燃料。本文采用金属铀粉与氮气在300~400℃直接发生化合反应,制得单相U2 N3粉末。粒度为38.3μm的 U2 N3...UN燃料具有铀密度高、熔点高、热导率高、热膨胀系数低、辐照稳定性好等优点,是未来空间核电源、核火箭、快堆和ADS的重要候选燃料。本文采用金属铀粉与氮气在300~400℃直接发生化合反应,制得单相U2 N3粉末。粒度为38.3μm的 U2 N3粉末在1600℃真空热压烧结,制得相对密度为93.5%、存在少量金属铀相的U N陶瓷;而18.1μm的U2 N3粉末在1550℃真空热压烧结,制得相对密度为96.1%、不残留金属铀相的 U N陶瓷,U与N的总质量分数为99.57%,每个金属杂质含量均低于50μg/g ,氧含量为1048μg/g ,碳含量为502μg/g。U2 N3在1027℃以上将会完全分解成UN ,UN在1627℃以上也会发生分解。展开更多
本文基于密度泛函理论(DFT)的GGA+U方法,应用Materials Studio 5.0软件包中的CASTEP程序模拟计算了Al掺杂锐钛矿型TiO2和N-Al共掺杂锐钛矿型TiO2的电子结构。计算结果表明:Al掺杂和N-Al共掺杂均能够降低TiO2的带隙值。Al掺杂是由于Al的3...本文基于密度泛函理论(DFT)的GGA+U方法,应用Materials Studio 5.0软件包中的CASTEP程序模拟计算了Al掺杂锐钛矿型TiO2和N-Al共掺杂锐钛矿型TiO2的电子结构。计算结果表明:Al掺杂和N-Al共掺杂均能够降低TiO2的带隙值。Al掺杂是由于Al的3s和3p态使导带底端下移而导致TiO2的带隙变窄;而N-Al共掺杂由于在体系中引入了N2p态,使导带底端向能量更低的方向移动,比Al单独掺杂时具有更低的带隙值。该研究结果很好地解释了Al掺杂以及N-Al共掺杂诱使TiO2的导带底端下移,禁带宽度减小,导致光谱响应范围红移的内在原因。展开更多
在基于Mesh-under的IPv6低功耗无线个域网(IPv6over low-power wireless personal area networks,6LoWPAN)中,针对传输路径上中间节点重传缓存溢出导致重传数据分片丢失,造成网络性能下降等问题,提出一种基于Mesh-under的备用缓存机制...在基于Mesh-under的IPv6低功耗无线个域网(IPv6over low-power wireless personal area networks,6LoWPAN)中,针对传输路径上中间节点重传缓存溢出导致重传数据分片丢失,造成网络性能下降等问题,提出一种基于Mesh-under的备用缓存机制。本文所提机制根据传输路径上各节点重传缓存使用情况及数据分片剩余跳数等信息,设置动态重传缓存门限,并为超过该门限的节点从其邻居节点中挑选合适的备用缓存节点,从而完成数据分片的缓存与重传过程,达到均衡使用各节点重传缓存的目的。结果表明,所提机制能够有效避免重传缓存溢出,减小网络能耗,同时进一步提高目的端重组成功率。展开更多
文摘本文基于密度泛函理论(DFT)的GGA+U方法,应用Materials Studio 5.0软件包中的CASTEP程序模拟计算了Al掺杂锐钛矿型TiO2和N-Al共掺杂锐钛矿型TiO2的电子结构。计算结果表明:Al掺杂和N-Al共掺杂均能够降低TiO2的带隙值。Al掺杂是由于Al的3s和3p态使导带底端下移而导致TiO2的带隙变窄;而N-Al共掺杂由于在体系中引入了N2p态,使导带底端向能量更低的方向移动,比Al单独掺杂时具有更低的带隙值。该研究结果很好地解释了Al掺杂以及N-Al共掺杂诱使TiO2的导带底端下移,禁带宽度减小,导致光谱响应范围红移的内在原因。
文摘在基于Mesh-under的IPv6低功耗无线个域网(IPv6over low-power wireless personal area networks,6LoWPAN)中,针对传输路径上中间节点重传缓存溢出导致重传数据分片丢失,造成网络性能下降等问题,提出一种基于Mesh-under的备用缓存机制。本文所提机制根据传输路径上各节点重传缓存使用情况及数据分片剩余跳数等信息,设置动态重传缓存门限,并为超过该门限的节点从其邻居节点中挑选合适的备用缓存节点,从而完成数据分片的缓存与重传过程,达到均衡使用各节点重传缓存的目的。结果表明,所提机制能够有效避免重传缓存溢出,减小网络能耗,同时进一步提高目的端重组成功率。