为了探究饮用乳双歧杆菌Y6活菌型发酵乳对消化功能障碍人群肠道健康的影响,本文进行了一项膳食干预试验。选择具有消化功能问题的受试者,每天饮用200 mL Y6活菌型发酵乳,持续4周。分别在干预前后进行临床评分,同时利用Illumina PE300测...为了探究饮用乳双歧杆菌Y6活菌型发酵乳对消化功能障碍人群肠道健康的影响,本文进行了一项膳食干预试验。选择具有消化功能问题的受试者,每天饮用200 mL Y6活菌型发酵乳,持续4周。分别在干预前后进行临床评分,同时利用Illumina PE300测序平台,对受试者粪便微生物的16S rDNA PCR产物片段进行高通量测序,使用气相色谱测定了粪便中短链脂肪酸(SCFAs)的含量。结果表明,饮用Y6活菌型发酵乳对消化功能障碍导致的临床症状有极显著的改善作用(P<0.01);高通量测序结果显示,Y6活菌型发酵乳的干预对人体肠道微生物群的组成影响显著,但对物种多样性和丰富度没有明显改变,其中有益菌Akkermansia、Collinsella和Erysipelotrichacee_UCG_003属的相对丰度增加,有害菌Lachnoclostridium属的相对丰富度减少;肠道内SCFAs(乙酸、丙酸和丁酸)含量显著增加(P<0.05)。乳双歧杆菌Y6活菌型发酵乳的干预可以显著改善消化功能障碍人群的肠道健康,为Y6菌株的应用提供理论依据。展开更多
In this study, organic solar cells (OSCs) with an active layer, a blend of polymer of non-fullerene (NFA) Y6 as an acceptor, and donor PBDB-T-2F as donor were simulated through the one-dimensional solar capacitance si...In this study, organic solar cells (OSCs) with an active layer, a blend of polymer of non-fullerene (NFA) Y6 as an acceptor, and donor PBDB-T-2F as donor were simulated through the one-dimensional solar capacitance simulator (SCAPS-1D) software to examine the performance of this type of organic polymer thin-film solar cell by varying the thickness of the active layer. PFN-Br interfacial layer entrenched in OPV devices gives overall enhanced open-circuit voltage, short-circuit current density and fill factor thus improving device performance. PEDOT: PSS is an electro-conductive polymer solution that has been extensively utilized in solar cell devices as a hole transport layer (HTL) due to its strong hole affinity, good thermal and mechanical stability, high work function, and high transparency in the visible range. The structure of the organic solar cell is ITO/PEDOT: PSS/BTP-4F: PBDB-T-2F/PFN-Br/Ag. Firstly, the active layer thickness was optimized to 100 nm;after that, the active-layer thickness was varied up to 900 nm. The results of these simulations demonstrated that the active layer thickness improves efficiency significantly up to 500 nm, then it decreased with increasing the thickness of the active layer from 600 nm, also notice that the short circuit current and the fill factor decrease with increasing the active layer from 600 nm, while the open voltage circuit increased with increasing the thickness of the active layer. The optimum thickness is 500 nm.展开更多
Previously, we reported that Y_6, a new epigallocatechin gallate derivative, is efficacious in reversing doxorubicin(DOX)–mediated resistance in hepatocellular carcinoma BEL-7404/DOX cells. In this study, we evaluate...Previously, we reported that Y_6, a new epigallocatechin gallate derivative, is efficacious in reversing doxorubicin(DOX)–mediated resistance in hepatocellular carcinoma BEL-7404/DOX cells. In this study, we evaluated the efficacy of Y_6 in reversing drug resistance both in vitro and in vivo by determining its effect on the adenosine triphosphate-binding cassette protein B1 transporter(ABCB1 or P-glycoprotein, P-gp). Our results showed that Y_6 significantly sensitized cells overexpressing the ABCB1 transporter to anticancer drugs that are ABCB1 substrates. Y_6 significantly stimulated the adenosine triphosphatase activity of ABCB1. Furthermore, Y_6 exhibited a higher docking score as compared with epigallocatechin gallate inside the transmembrane domain of ABCB1. In addition, in the nude mousetumor xenograft model, Y_6(110 mg/kg, intragastric administration), in combination with doxorubicin(2 mg/kg, intraperitoneal injection), significantly inhibited the growth of BEL-7404/DOX cell xenograft tumors, compared to equivalent epigallocatechin gallate. In conclusion, Y_6 significantly reversed ABCB1-mediated multidrug resistance and its mechanisms of action may result from its competitive inhibition of the ABCB1 drug efflux function.展开更多
文摘In this study, organic solar cells (OSCs) with an active layer, a blend of polymer of non-fullerene (NFA) Y6 as an acceptor, and donor PBDB-T-2F as donor were simulated through the one-dimensional solar capacitance simulator (SCAPS-1D) software to examine the performance of this type of organic polymer thin-film solar cell by varying the thickness of the active layer. PFN-Br interfacial layer entrenched in OPV devices gives overall enhanced open-circuit voltage, short-circuit current density and fill factor thus improving device performance. PEDOT: PSS is an electro-conductive polymer solution that has been extensively utilized in solar cell devices as a hole transport layer (HTL) due to its strong hole affinity, good thermal and mechanical stability, high work function, and high transparency in the visible range. The structure of the organic solar cell is ITO/PEDOT: PSS/BTP-4F: PBDB-T-2F/PFN-Br/Ag. Firstly, the active layer thickness was optimized to 100 nm;after that, the active-layer thickness was varied up to 900 nm. The results of these simulations demonstrated that the active layer thickness improves efficiency significantly up to 500 nm, then it decreased with increasing the thickness of the active layer from 600 nm, also notice that the short circuit current and the fill factor decrease with increasing the active layer from 600 nm, while the open voltage circuit increased with increasing the thickness of the active layer. The optimum thickness is 500 nm.
基金supported by the National Natural Science Foundation of China (No. 81160532)the Open Project of Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research (No. GXBMR201602, China)+1 种基金the Young and Middle-aged Teachers Foundation Ability Enhancement Project of Guangxi Colleges and Universities (No. 2018KY0102, China)US NIH (No. 1R15CA143701)
文摘Previously, we reported that Y_6, a new epigallocatechin gallate derivative, is efficacious in reversing doxorubicin(DOX)–mediated resistance in hepatocellular carcinoma BEL-7404/DOX cells. In this study, we evaluated the efficacy of Y_6 in reversing drug resistance both in vitro and in vivo by determining its effect on the adenosine triphosphate-binding cassette protein B1 transporter(ABCB1 or P-glycoprotein, P-gp). Our results showed that Y_6 significantly sensitized cells overexpressing the ABCB1 transporter to anticancer drugs that are ABCB1 substrates. Y_6 significantly stimulated the adenosine triphosphatase activity of ABCB1. Furthermore, Y_6 exhibited a higher docking score as compared with epigallocatechin gallate inside the transmembrane domain of ABCB1. In addition, in the nude mousetumor xenograft model, Y_6(110 mg/kg, intragastric administration), in combination with doxorubicin(2 mg/kg, intraperitoneal injection), significantly inhibited the growth of BEL-7404/DOX cell xenograft tumors, compared to equivalent epigallocatechin gallate. In conclusion, Y_6 significantly reversed ABCB1-mediated multidrug resistance and its mechanisms of action may result from its competitive inhibition of the ABCB1 drug efflux function.