锂硫电池由于其高能量密度、低成本效益被认为是最有前途的下一代电池体系之一.然而多硫化物的穿梭效应大幅降低了锂硫电池的循环稳定性和寿命,严重阻碍其实际应用.无机金属化合物材料改性的隔膜不仅能抑制多硫化锂(LiPS)的穿梭效应,其...锂硫电池由于其高能量密度、低成本效益被认为是最有前途的下一代电池体系之一.然而多硫化物的穿梭效应大幅降低了锂硫电池的循环稳定性和寿命,严重阻碍其实际应用.无机金属化合物材料改性的隔膜不仅能抑制多硫化锂(LiPS)的穿梭效应,其部分特殊的晶面还能加速多硫化物的氧化还原反应动力学.本文在罗盘状ZnS表面原位生长球状的MoO_(2),制备MoO_(2)/ZnS复合材料.MoO_(2)对多硫化物有着较强的吸附作用,ZnS有着良好的电导率,两者的复合可加速电子传导效率和氧化还原速率.以所制备的MoO_(2)/ZnS作为隔膜改性材料,锂硫电池在5 C的大电流密度下,经过1000次循环后仍可以保持690 mAh g^(-1)的放电比容量,平均每圈的容量衰减率仅为0.014%,表现出优异的循环性能和倍率性能.展开更多
基金supported by the Jiangsu Province Industry–University–Research Project,China(No.BY20221160)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(No.KYCX22_3798)+2 种基金the National Natural Science Foundation of China(No.52275339)the Key Research and Development Plan of the Ministry of Science and Technology,China(No.2023YFE0200400)the Science and Technology Project of Jiangsu Province,China(No.BZ2021053)。
文摘锂硫电池由于其高能量密度、低成本效益被认为是最有前途的下一代电池体系之一.然而多硫化物的穿梭效应大幅降低了锂硫电池的循环稳定性和寿命,严重阻碍其实际应用.无机金属化合物材料改性的隔膜不仅能抑制多硫化锂(LiPS)的穿梭效应,其部分特殊的晶面还能加速多硫化物的氧化还原反应动力学.本文在罗盘状ZnS表面原位生长球状的MoO_(2),制备MoO_(2)/ZnS复合材料.MoO_(2)对多硫化物有着较强的吸附作用,ZnS有着良好的电导率,两者的复合可加速电子传导效率和氧化还原速率.以所制备的MoO_(2)/ZnS作为隔膜改性材料,锂硫电池在5 C的大电流密度下,经过1000次循环后仍可以保持690 mAh g^(-1)的放电比容量,平均每圈的容量衰减率仅为0.014%,表现出优异的循环性能和倍率性能.
基金financially supported by the National Key Research and Development Program of China(No.2020YFB0311201)the National Natural Science Foundation of China(No.51627802)。