In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples a...In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples are 0.5, 1, 1.5, 1.75, 2, 2.5 and 3 cm edge with a respective initial water content of 2.7, 3.76, 3.48, 2.68, 3.28, 2.17 and 2.29 kg/kgms. For cylindrical samples, the radius is set at 0.5 cm and sample heights are 1, 1.5, 2, 2.5, 3, 3.5 and 4 cm with respective water contents of 2.2, 3.19, 2.85, 2.1, 2.17, 2.39 and 2.03 kg/kgms. The effective diffusion coefficients of cubic samples are of the order of 10−10 and 10−9 m2∙s−1 grew with sample edge. As for the cylindrical samples, the effective diffusion coefficients were of the order of 10−9 m2∙s−1 and there was no linear correlation between cylinder height and their effective diffusion coefficient. As for the examination of the initial water content on the effective diffusion coefficient, it turned out that the initial water content had no influence on the effective diffusion coefficient of the sweet potato samples.展开更多
The axisymmetric elasticity theory of cubic quasicrystal was developed in Ref. [1]. The axisymmetric elasticity problem of cubic quasicrystal is reduced to a single higher-order partial differential equation by introd...The axisymmetric elasticity theory of cubic quasicrystal was developed in Ref. [1]. The axisymmetric elasticity problem of cubic quasicrystal is reduced to a single higher-order partial differential equation by introducing a displacement function, based on which, the exact analytic solutions for the elastic field of an axisymmetric contact problem of cubic quasicrystalline materials are obtained for universal contact stress or contact displacement. The result shows that if the contact stress has order - 1/2 singularity on the edge of the contact domain, die contact displacement is a constant in the contact domain. Conversely, if the contact displacement is a constant, the contact stress must have order - 1/2 singularity on the edge of die contact domain.展开更多
In this contribution, an efficient and simple two-step hybrid electrochemical-thermal route was developed for the synthesis of cubic shaped Zn_2SnO_4 (ZTO) nanoparticles using aqueous sodium bicarbonate(NaHCO_3) and s...In this contribution, an efficient and simple two-step hybrid electrochemical-thermal route was developed for the synthesis of cubic shaped Zn_2SnO_4 (ZTO) nanoparticles using aqueous sodium bicarbonate(NaHCO_3) and sodium stannate(Na_2SnO_3) electrolyte. The sacrificial Zn was used as anode and cathode in an undivided cell under galvanostatic mode at room temperature. The bath concentration and current density were respectively varied from 30 to 120 mmol and 0.05 to 1.5 A/dm^2. The electrochemically generated precursor was calcined for an hour at different range of temperature from 60 to 600. The crystallite sizes in the range of 24-53 nm were calculated based on Debye-Scherrer equation. Scanning electron microscope and transmission electron microscopy results reveal that all the particles have cubic morphology with diameter of40-50 nm. The as-prepared ZTO samples showed higher catalytic activity towards the degradation of methylene blue(MB) dye, and 90% degradation was found for the sample calcined at 600, which is greater than that of commercial TiO_2-P25 photocatalysts. The photodegradation efficiency of ZTO samples was found to be a function of exposure time and the dye solution p H value. These results indicate that the ZTO nanoparticles may be employed to remove dyes from wastewater.展开更多
Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and repr...Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.展开更多
We observe the influence of AI occupancies in Li sites on the formation process of the garnet solid elec- trolyte of Li_7La_3Zr_2O_12 (LLZO). A direct incorporation of AI is first promoted in a Li-insufficient garne...We observe the influence of AI occupancies in Li sites on the formation process of the garnet solid elec- trolyte of Li_7La_3Zr_2O_12 (LLZO). A direct incorporation of AI is first promoted in a Li-insufficient garnet solid electrolyte during the calcination process of 850 ℃ and then the cubic phase of LLZO is obtained after successive annealing step of 1000 ℃. Comparing to pristine LLZO, AI incorporated LLZO shows less formation of Li_2CO_3, keeping crystallographic and physicochemical properties. This AI incorporation im- proves both the ionic conductivity and interfacial resistance to poisoning procedure.展开更多
Using the split-step Fourier transform method, we numerically investigate the generation of breathing solitons in the propagation and interactions of Airy–Gaussian(AiG) beams in a cubic–quintic nonlinear medium in...Using the split-step Fourier transform method, we numerically investigate the generation of breathing solitons in the propagation and interactions of Airy–Gaussian(AiG) beams in a cubic–quintic nonlinear medium in one transverse dimension. We show that the propagation of single AiG beams can generate stable breathing solitons that do not accelerate within a certain initial power range. The propagation direction of these breathing solitons can be controlled by introducing a launch angle to the incident AiG beams. When two AiG beams accelerated in opposite directions interact with each other,different breathing solitons and soliton pairs are observed by adjusting the phase shift, the beam interval, the amplitudes,and the light field distribution of the initial AiG beams.展开更多
How to reconstruct a dynamic displacement of slender flexible structures is the key technology to develop smart structures and structural health monitoring(SHM), which are beneficial for controlling the structural vib...How to reconstruct a dynamic displacement of slender flexible structures is the key technology to develop smart structures and structural health monitoring(SHM), which are beneficial for controlling the structural vibration and protecting the structural safety. In this paper, the displacement reconstruction method based on cubic spline fitting is put forward to reconstruct the dynamic displacement of slender flexible structures without the knowledge of modeshapes and applied loading. The obtained strains and displacements are compared with the results calculated by ABAQUS to check the method's validity. It can be found that the proposed method can accurately identify the strains and displacement of slender flexible structures undergoing linear vibrations, nonlinear vibrations, and parametric vibrations. Under the concentrated force, the strains of slender flexible structures will change suddenly along the axial direction. With locally densified measurement points, the present reconstruction method still works well for the strain concentration problem.展开更多
The structural, electronic, and optical properties of cubic perovskite NaMgF3 are calculated by plane-wave pseudopo- tential density functional theory. The calculated lattice constant a0, bulk modulus B0, and the deri...The structural, electronic, and optical properties of cubic perovskite NaMgF3 are calculated by plane-wave pseudopo- tential density functional theory. The calculated lattice constant a0, bulk modulus B0, and the derivative of bulk modulus B~ are 3.872/~, 78.2 GPa, and 3.97, respectively. The results are in good agreement with the available experimental and theo- retical values. The electronic structure shows that cubic NaMgF3 is an indirect insulator with a wide forbidden band gap of Eg = 5.90 eV. The contribution of the different bands is analyzed by total and partial density of states curves. Population analysis of NaMgF3 indicates that there is strong ionic bonding in the MgF2 unit, and a mixture of ionic and weak covalent bonding in the NaF unit. Calculations of dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, optical reflectivity, and conductivity are also performed in the energy range 0 to 70 eV.展开更多
We reported the development of a Ф100 cm growth apparatus for skull melting growth of yttria-stabilized cubic zirconia(YSZ) crystals and more than 1000 kg crystals have been grown in the furnace each time.The growth ...We reported the development of a Ф100 cm growth apparatus for skull melting growth of yttria-stabilized cubic zirconia(YSZ) crystals and more than 1000 kg crystals have been grown in the furnace each time.The growth conditions were optimized and the structure of the as-grown crystals was characterized by X-ray diffraction.The transmittance of 15 mol.% yttria-stabilized cubic zirconia crystal was nearly 80% in the range of 400–1600 nm.The refractive indices were measured and fitted the Sellmeier equation whi...展开更多
The 1:2 internal resonance of coupled dynamic system with quadratic and cubic nonlinearities is studied. The normal forms of this system in 1 :2 internal resonance were derived by using the direct method of normal for...The 1:2 internal resonance of coupled dynamic system with quadratic and cubic nonlinearities is studied. The normal forms of this system in 1 :2 internal resonance were derived by using the direct method of normal form. In the normal,forms, quadratic and cubic nonlinearities were remained. Based on a new convenient transformation technique, the 4-dimension bifurcation equations were reduced to 3-dimension. A bifurcation equation with one-dimension was obtained. Then the bifurcation behaviors of a universal unfolding were studied by using the singularity theory. The method of this paper can be applied to analyze the bifurcation behavior in strong internal resonance on 4-dimension center manifolds.展开更多
We investigate the energy exchange between (3+1)D colliding spatiotemporal solitons (STSs) in dispersive media with cubic-quintic (CQ) nonlinearity by numerical simulations. Energy exchange between two (3+1)...We investigate the energy exchange between (3+1)D colliding spatiotemporal solitons (STSs) in dispersive media with cubic-quintic (CQ) nonlinearity by numerical simulations. Energy exchange between two (3+1)D head on colliding STSs caused by their phase difference is observed, just as occurring in other optical media. Moreover, energy exchange between two head-on colliding STSs with different speeds is firstly shown in the CQ and saturable media. This phenomenon, we believe, may arouse some interest in the future studies of soliton collision in optical media.展开更多
Cubic boron nitride (c-BN) thin films are deposited on p-type Si wafers using radio frequency (RF) sputtering and then doped by implanting S ions. Wile implantation energy of the ions is 19 keV, and the implantati...Cubic boron nitride (c-BN) thin films are deposited on p-type Si wafers using radio frequency (RF) sputtering and then doped by implanting S ions. Wile implantation energy of the ions is 19 keV, and the implantation dose is between 1015 ions/cm2 and 1016 ions/cm2. The doped c-BN thin films are then annealed at a temperature between 400℃ and 800℃. The results show that the surface resistivity of doped and annealed c-BN thin films is lowered by two to three orders, and the activation energy of c-BN thin films is 0.18 eV.展开更多
文摘In this article, we investigated the influence of size and initial water content on the effective diffusion coefficient of sweet potatoes samples cut into cubic and cylindrical shapes. The sizes of the cubic samples are 0.5, 1, 1.5, 1.75, 2, 2.5 and 3 cm edge with a respective initial water content of 2.7, 3.76, 3.48, 2.68, 3.28, 2.17 and 2.29 kg/kgms. For cylindrical samples, the radius is set at 0.5 cm and sample heights are 1, 1.5, 2, 2.5, 3, 3.5 and 4 cm with respective water contents of 2.2, 3.19, 2.85, 2.1, 2.17, 2.39 and 2.03 kg/kgms. The effective diffusion coefficients of cubic samples are of the order of 10−10 and 10−9 m2∙s−1 grew with sample edge. As for the cylindrical samples, the effective diffusion coefficients were of the order of 10−9 m2∙s−1 and there was no linear correlation between cylinder height and their effective diffusion coefficient. As for the examination of the initial water content on the effective diffusion coefficient, it turned out that the initial water content had no influence on the effective diffusion coefficient of the sweet potato samples.
基金the National Natural Science Foundation of China(No.19972011)
文摘The axisymmetric elasticity theory of cubic quasicrystal was developed in Ref. [1]. The axisymmetric elasticity problem of cubic quasicrystal is reduced to a single higher-order partial differential equation by introducing a displacement function, based on which, the exact analytic solutions for the elastic field of an axisymmetric contact problem of cubic quasicrystalline materials are obtained for universal contact stress or contact displacement. The result shows that if the contact stress has order - 1/2 singularity on the edge of the contact domain, die contact displacement is a constant in the contact domain. Conversely, if the contact displacement is a constant, the contact stress must have order - 1/2 singularity on the edge of die contact domain.
文摘In this contribution, an efficient and simple two-step hybrid electrochemical-thermal route was developed for the synthesis of cubic shaped Zn_2SnO_4 (ZTO) nanoparticles using aqueous sodium bicarbonate(NaHCO_3) and sodium stannate(Na_2SnO_3) electrolyte. The sacrificial Zn was used as anode and cathode in an undivided cell under galvanostatic mode at room temperature. The bath concentration and current density were respectively varied from 30 to 120 mmol and 0.05 to 1.5 A/dm^2. The electrochemically generated precursor was calcined for an hour at different range of temperature from 60 to 600. The crystallite sizes in the range of 24-53 nm were calculated based on Debye-Scherrer equation. Scanning electron microscope and transmission electron microscopy results reveal that all the particles have cubic morphology with diameter of40-50 nm. The as-prepared ZTO samples showed higher catalytic activity towards the degradation of methylene blue(MB) dye, and 90% degradation was found for the sample calcined at 600, which is greater than that of commercial TiO_2-P25 photocatalysts. The photodegradation efficiency of ZTO samples was found to be a function of exposure time and the dye solution p H value. These results indicate that the ZTO nanoparticles may be employed to remove dyes from wastewater.
文摘Modelling and simulation of projectile flight is at the core of ballistic computer software and is essential to the study of performance of rifles and projectiles in various engagement conditions.An effective and representative numerical model of projectile flight requires a relatively good approximation of the aerodynamics.The aerodynamic coefficients of the projectile model should be described as a series of piecewise polynomial functions of the Mach number that ideally meet the following conditions:they are continuous,differentiable at least once,and have a relatively low degree.The paper provides the steps needed to generate such piecewise polynomial functions using readily available tools,and then compares Piecewise Cubic Hermite Interpolating Polynomial(PCHIP),cubic splines,and piecewise linear functions,and their variant,as potential curve fitting methods to approximate the aerodynamics of a generic small arms projectile.A key contribution of the paper is the application of PCHIP to the approximation of projectile aerodynamics,and its evaluation against a set of criteria.Finally,the paper provides a baseline assessment of the impact of the polynomial functions on flight trajectory predictions obtained with 6-degree-of-freedom simulations of a generic projectile.
基金financial support from the R&D Convergence Program (CAP-14-02-KITECH)the National Research Council of Science & Technology of the Republic of Korea
文摘We observe the influence of AI occupancies in Li sites on the formation process of the garnet solid elec- trolyte of Li_7La_3Zr_2O_12 (LLZO). A direct incorporation of AI is first promoted in a Li-insufficient garnet solid electrolyte during the calcination process of 850 ℃ and then the cubic phase of LLZO is obtained after successive annealing step of 1000 ℃. Comparing to pristine LLZO, AI incorporated LLZO shows less formation of Li_2CO_3, keeping crystallographic and physicochemical properties. This AI incorporation im- proves both the ionic conductivity and interfacial resistance to poisoning procedure.
基金Project supported by the National Natural Science Foundation of China(Grant No.51602028)the Science and Technology Development Project of Jilin Province,China(Grant No.20160520114JH)+1 种基金the Youth Science Fund of Changchun University of Science and Technology,China(Grant No.XQNJJ-2017-04)the Natural Science Foundation of Tianjin City,China(Grant No.13JCYBJC16400)
文摘Using the split-step Fourier transform method, we numerically investigate the generation of breathing solitons in the propagation and interactions of Airy–Gaussian(AiG) beams in a cubic–quintic nonlinear medium in one transverse dimension. We show that the propagation of single AiG beams can generate stable breathing solitons that do not accelerate within a certain initial power range. The propagation direction of these breathing solitons can be controlled by introducing a launch angle to the incident AiG beams. When two AiG beams accelerated in opposite directions interact with each other,different breathing solitons and soliton pairs are observed by adjusting the phase shift, the beam interval, the amplitudes,and the light field distribution of the initial AiG beams.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51679167 and 51525803)
文摘How to reconstruct a dynamic displacement of slender flexible structures is the key technology to develop smart structures and structural health monitoring(SHM), which are beneficial for controlling the structural vibration and protecting the structural safety. In this paper, the displacement reconstruction method based on cubic spline fitting is put forward to reconstruct the dynamic displacement of slender flexible structures without the knowledge of modeshapes and applied loading. The obtained strains and displacements are compared with the results calculated by ABAQUS to check the method's validity. It can be found that the proposed method can accurately identify the strains and displacement of slender flexible structures undergoing linear vibrations, nonlinear vibrations, and parametric vibrations. Under the concentrated force, the strains of slender flexible structures will change suddenly along the axial direction. With locally densified measurement points, the present reconstruction method still works well for the strain concentration problem.
基金Project supported by the National Natural Science Foundation of China(Grant No.11176020)
文摘The structural, electronic, and optical properties of cubic perovskite NaMgF3 are calculated by plane-wave pseudopo- tential density functional theory. The calculated lattice constant a0, bulk modulus B0, and the derivative of bulk modulus B~ are 3.872/~, 78.2 GPa, and 3.97, respectively. The results are in good agreement with the available experimental and theo- retical values. The electronic structure shows that cubic NaMgF3 is an indirect insulator with a wide forbidden band gap of Eg = 5.90 eV. The contribution of the different bands is analyzed by total and partial density of states curves. Population analysis of NaMgF3 indicates that there is strong ionic bonding in the MgF2 unit, and a mixture of ionic and weak covalent bonding in the NaF unit. Calculations of dielectric function, absorption coefficient, refractive index, electronic energy loss spectroscopy, optical reflectivity, and conductivity are also performed in the energy range 0 to 70 eV.
基金supported by the National Natural Science Foundation of China (50672111)Shanghai Science and Technology Committee (08520513100)
文摘We reported the development of a Ф100 cm growth apparatus for skull melting growth of yttria-stabilized cubic zirconia(YSZ) crystals and more than 1000 kg crystals have been grown in the furnace each time.The growth conditions were optimized and the structure of the as-grown crystals was characterized by X-ray diffraction.The transmittance of 15 mol.% yttria-stabilized cubic zirconia crystal was nearly 80% in the range of 400–1600 nm.The refractive indices were measured and fitted the Sellmeier equation whi...
文摘The 1:2 internal resonance of coupled dynamic system with quadratic and cubic nonlinearities is studied. The normal forms of this system in 1 :2 internal resonance were derived by using the direct method of normal form. In the normal,forms, quadratic and cubic nonlinearities were remained. Based on a new convenient transformation technique, the 4-dimension bifurcation equations were reduced to 3-dimension. A bifurcation equation with one-dimension was obtained. Then the bifurcation behaviors of a universal unfolding were studied by using the singularity theory. The method of this paper can be applied to analyze the bifurcation behavior in strong internal resonance on 4-dimension center manifolds.
基金Project supported by the Key Project of Hunan Provincial Educational Department of China(Grant No04A058)
文摘We investigate the energy exchange between (3+1)D colliding spatiotemporal solitons (STSs) in dispersive media with cubic-quintic (CQ) nonlinearity by numerical simulations. Energy exchange between two (3+1)D head on colliding STSs caused by their phase difference is observed, just as occurring in other optical media. Moreover, energy exchange between two head-on colliding STSs with different speeds is firstly shown in the CQ and saturable media. This phenomenon, we believe, may arouse some interest in the future studies of soliton collision in optical media.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60876006 and 60376007)the Natural Science Foundation of Beijing, China (Grant No. 4072007)+2 种基金the Scientific Research Program of Beijing Municipal Commission of Education, China (Grant No.KM200910005018)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, Chinathe Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality
文摘Cubic boron nitride (c-BN) thin films are deposited on p-type Si wafers using radio frequency (RF) sputtering and then doped by implanting S ions. Wile implantation energy of the ions is 19 keV, and the implantation dose is between 1015 ions/cm2 and 1016 ions/cm2. The doped c-BN thin films are then annealed at a temperature between 400℃ and 800℃. The results show that the surface resistivity of doped and annealed c-BN thin films is lowered by two to three orders, and the activation energy of c-BN thin films is 0.18 eV.