Catalytic dehydrogenation of cycloalkanes is considered a valuable endothermic process for alleviating the thermal barrier issue of hypersonic vehicles.However,conventional Pt-based catalysts often face the severe pro...Catalytic dehydrogenation of cycloalkanes is considered a valuable endothermic process for alleviating the thermal barrier issue of hypersonic vehicles.However,conventional Pt-based catalysts often face the severe problem of metal sintering under high-temperature conditions.Herein,we develop an efficient K_(2)CO_(3)-modified Pt/TiO_(2)—Al_(2)O_(3)(K—Pt/TA)for cycloalkane dehydrogenation.The optimized K—Pt/TA showed a high specific activity above 27.9 mol·mol^(-1)·s^(-1)(H_(2)/Pt),with toluene selectivity above 90.0%at 600℃with a high weight hourly space velocity of 266.4 h^(-1).The introduction of alkali metal ions could generate titanate layers after high-temperature hydrogen reduction treatment,which promotes the generation of oxygen vacancy defects to anchored Pt clusters.In addition,the titanate layers could weaken the surface acidity of catalysts and inhibit side reactions,including pyrolysis,polymerization,and isomerization reactions.Thus,this work provides a modification method to develop efficient and stable dehydrogenation catalysts under high-temperature conditions.展开更多
A computer-aided ionic liquid design(CAILD) study is presented for the frequently encountered alkane/cycloalkane separations in petrochemical industry. Exhaustive experimental data are first collected to extend the UN...A computer-aided ionic liquid design(CAILD) study is presented for the frequently encountered alkane/cycloalkane separations in petrochemical industry. Exhaustive experimental data are first collected to extend the UNIFAC-IL model for this system, where the proximity effect in alkanes and cycloalkanes is considered specifically by defining distinct groups. The thermodynamic performances of a large number of ILs for 4 different alkane/cycloalkane systems are then compared to select a representative example of such separations. By applying n-heptane/methylcyclohexane extractive distillation as a case study, the CAILD task is cast as a mixed-integer nonlinear programming(MINLP) problem based on the obtained task-specific UNIFAC-IL model and two semi-empirical models for IL physical properties. The top 5 IL candidates determined by solving the MINLP problem are subsequently introduced into Aspen Plus for process simulation and economic analysis, which finally identify 1-hexadecyl-methylpiperidinium tricyanomethane([C_(16)MPip][C(CN)_3]) as the best entrainer for this separation.展开更多
To get deep understanding of the reaction mechanism of coal pyrolysis in hydrogen plasma, the decomposition reaction pathways of aliphatic hydrocarbons and cycloalkanes, which are two main components in volatiles from...To get deep understanding of the reaction mechanism of coal pyrolysis in hydrogen plasma, the decomposition reaction pathways of aliphatic hydrocarbons and cycloalkanes, which are two main components in volatiles from coal, were investigated. Methane and cyclohexane were chosen as the model compounds. Density functional theory was employed, and many reaction pathways were involved. Calculations were carried out in Gaussian 09 at the B3LYP/6-31G(d,p) level of the theory. The results indicate that the main pyrolysis products of methane and cyclohexane in hydrogen plasma are both hydrogen and acetylene, and the participation of active hydrogen atoms makes dehydrogenation reactions more favorable. H2 mainly comes from dehydrogenation process, while many reaction pathways are responsible for acetylene formation. During coal pyrolysis in hydrogen plasma, three main components in volatiles like aliphatic hydrocarbons, cycloalkanes and aromatic hydrocarbons lead to the formation of hydrogen and acetylene, but their contributions to products distribution are different.展开更多
Autoxidation of cycloalkanes (C5-C8) with molecular oxygen under catalyst-free and solvent-free conditions was conducted systematically for the first time, focusing on the autoxidation temperature and product distri...Autoxidation of cycloalkanes (C5-C8) with molecular oxygen under catalyst-free and solvent-free conditions was conducted systematically for the first time, focusing on the autoxidation temperature and product distribution. The autoxidation of cyclopentane, cyclohexane, cycloheptane and cyclooctane occurs at 120 ℃, 130 ℃, 120 ℃, and 105 ℃ respectively, with obvious oxidized products formation. At 140 ℃, 145 ℃, 130 ℃ and 125 ℃, acceptable yields of the oxidized products could be obtained for them, and the oxidized product distributions were investigated in detail. The autoxidation of cycloalkanes follows the pseudo-first-order kinetic model and the apparent activation energies (Ea) for the autoxidation of cyclopentane and cyclohexane are 159.76 kJ. tool-1 and 86.75 kJ. mol-1 respectively. This study can act as an important reference in screen of suitable reaction temperature and comparison of the performance of various catalysts in the catalytic oxidation of cycloalkanes in the attempt to enhance the oxidized product selectivity.展开更多
A combinatorial method based on the determination of the averaged weight of permutations controlling the chirality/achirality fittingness of 2n substitution sites of the monocyclic cycloalkane allows to obtain general...A combinatorial method based on the determination of the averaged weight of permutations controlling the chirality/achirality fittingness of 2n substitution sites of the monocyclic cycloalkane allows to obtain generalized functional equations for direct enumeration of enantiomers pairs and achiral skeletons of any derivatives of monocyclic cycloalkanes having heteromorphic alkyl substituents with the distinct length k with the empirical formula , wherein at least two alkyl groups??of the distinct size ?each. ?is the number of alkyl radicals ?of the system??verifying the relation . The integer sequences of enantiomer pairs and achiral skeletons are given for substituted derivatives of monocyclic cycloalkane for n = 3, 4 and k = 3, 4, 5. The composite stereoisomerism of this particular compound is also highlighted.展开更多
Quantum chemistry parameters of 28 alkyl(1-phenylsulfonyl) cycloalkane-carboxy-lates were computed at the 6-31G* level in fully optimal manner using B3LYP method of density functional theory (DFT). With GQSARF2.0...Quantum chemistry parameters of 28 alkyl(1-phenylsulfonyl) cycloalkane-carboxy-lates were computed at the 6-31G* level in fully optimal manner using B3LYP method of density functional theory (DFT). With GQSARF2.0 program, the correlation equations that can predict n-octanol/water partition coefficient (lgKow) were developed using the structural and thermodynamic parameters of 28 alkyl(1-phenylsulfonyl) cycloalkane-carboxylates with experimental data of lgKow as theoretical descriptors; the correlation coefficient (R^2) was 0.9452 and the cross-validation squared correlation coefficient (Rcv^2) 0.9312. Furthermore, a four-variable model from MEDV was obtained, of which R2 = 0.9497 and Rov^2 =0.9388. The models were validated by variance inflation factor (VIF) and t-test. Cross-validation indicates that the correlation and predicting ability of the model based on both DFT method and MEDV are more advantageous than those obtained from semi-empirical AM1 method.展开更多
Feasibility of dissolution and utilization of expanded polystyrene in cycloalkane solutions was investigated in this work. The dissolution process of expanded polystyrene in several cycloalkane solutions decalin, cycl...Feasibility of dissolution and utilization of expanded polystyrene in cycloalkane solutions was investigated in this work. The dissolution process of expanded polystyrene in several cycloalkane solutions decalin, cyclohexane and methyl cyclohexane was studied. The effect of dissolution temperature, mechanical agitation, ultrasonic wave and stirring rate was studied under optimized conditions. Mass transfer coefficients were fitted. The results showed that the dissolution rate of expanded polystyrene in different cycloalkane solutions was ranked as decalin > methyl cyclohexane > cyclohexane;higher dissolution temperature and faster stirring rate could speed up the dissolution of expanded polystyrene;the effect of mechanical agitation was superior to ultrasonic condition;the solubility of top face was better than side face and under face.展开更多
Octanol/water partition coefficients,adsorption coefficients for soils and sediments and acute toxicities to Daphnia magna of 28 alkyl (1-phenylsulfonyl) cycloalkane-carboxylates were measured. These properties were c...Octanol/water partition coefficients,adsorption coefficients for soils and sediments and acute toxicities to Daphnia magna of 28 alkyl (1-phenylsulfonyl) cycloalkane-carboxylates were measured. These properties were correlated by linear solvation energy relationship (LSER) and chromatographic retention data determined by reverse-phase high performance liquid chromatography (RP-HPLC). The accuracy and range of applicability of these two quantitative structure-activity relationship (QSAR) methods were compared in this paper.展开更多
Developing an energy supply-chain based on renewable biomass holds great potential to build a low carbon society.High-energy-density(HED)jet fuel,featuring unique fused/strained cycloalkanes,is of great significance f...Developing an energy supply-chain based on renewable biomass holds great potential to build a low carbon society.High-energy-density(HED)jet fuel,featuring unique fused/strained cycloalkanes,is of great significance for volume-limited military aircrafts,as their high density and combustion heat can extend flight duration and increase the payload.Therefore,the exploration of biomass-based routes towards HED fuel has drawn much attention over the past decade.Cycloaddition reaction features rapid construction of various carbocycles in an atom-and step-economical fashion.This elegant strategy has been widely applied in the manufacture of sustainable HED fuel.Here we carefully summarize the progress achieved in this fascinating area and the review is categorized by the cycloaddition patterns including[4+2],[2+2],[4+4],and[2+1]cycloadditions.Besides,the energy densities of the as-prepared biofuels and petroleumbased fuels(conventional Jet-A and advanced JP-10)are also compared.This review will provide important insights into rational design of new HED fuel with different ring-types/sizes and inspire the chemists to turn those literature studies into practical applications in military field.展开更多
This article elaborates on the research achievements of domestic and foreign researchers in exploring the conversion pathways and reaction mechanisms of cyclohexane catalytic cracking in recent years.It analyzes the e...This article elaborates on the research achievements of domestic and foreign researchers in exploring the conversion pathways and reaction mechanisms of cyclohexane catalytic cracking in recent years.It analyzes the effects of different catalysts and process conditions on the conversion laws of cyclohexane,summarizes the conversion pathways of cyclohexane,and discusses the chemical mechanisms of several main reactions of cyclohexane in catalytic cracking,such as cracking,isomerization,hydrogen transfer,dehydrogenation,and alkylation;Several advanced characterization methods and common research methods were listed,and prospects for future development in this field were proposed based on existing research.展开更多
基金supported by the National Natural Science Foundation of China(22025802)。
文摘Catalytic dehydrogenation of cycloalkanes is considered a valuable endothermic process for alleviating the thermal barrier issue of hypersonic vehicles.However,conventional Pt-based catalysts often face the severe problem of metal sintering under high-temperature conditions.Herein,we develop an efficient K_(2)CO_(3)-modified Pt/TiO_(2)—Al_(2)O_(3)(K—Pt/TA)for cycloalkane dehydrogenation.The optimized K—Pt/TA showed a high specific activity above 27.9 mol·mol^(-1)·s^(-1)(H_(2)/Pt),with toluene selectivity above 90.0%at 600℃with a high weight hourly space velocity of 266.4 h^(-1).The introduction of alkali metal ions could generate titanate layers after high-temperature hydrogen reduction treatment,which promotes the generation of oxygen vacancy defects to anchored Pt clusters.In addition,the titanate layers could weaken the surface acidity of catalysts and inhibit side reactions,including pyrolysis,polymerization,and isomerization reactions.Thus,this work provides a modification method to develop efficient and stable dehydrogenation catalysts under high-temperature conditions.
基金financial support from National Natural Science Foundation of China(21776074,21576081,and21861132019)
文摘A computer-aided ionic liquid design(CAILD) study is presented for the frequently encountered alkane/cycloalkane separations in petrochemical industry. Exhaustive experimental data are first collected to extend the UNIFAC-IL model for this system, where the proximity effect in alkanes and cycloalkanes is considered specifically by defining distinct groups. The thermodynamic performances of a large number of ILs for 4 different alkane/cycloalkane systems are then compared to select a representative example of such separations. By applying n-heptane/methylcyclohexane extractive distillation as a case study, the CAILD task is cast as a mixed-integer nonlinear programming(MINLP) problem based on the obtained task-specific UNIFAC-IL model and two semi-empirical models for IL physical properties. The top 5 IL candidates determined by solving the MINLP problem are subsequently introduced into Aspen Plus for process simulation and economic analysis, which finally identify 1-hexadecyl-methylpiperidinium tricyanomethane([C_(16)MPip][C(CN)_3]) as the best entrainer for this separation.
基金supported by the National High Technology Research and Development Program of China(2009AA044701)the Program for Zhejiang Leading Team of S&T Innovation(2013TD07)
文摘To get deep understanding of the reaction mechanism of coal pyrolysis in hydrogen plasma, the decomposition reaction pathways of aliphatic hydrocarbons and cycloalkanes, which are two main components in volatiles from coal, were investigated. Methane and cyclohexane were chosen as the model compounds. Density functional theory was employed, and many reaction pathways were involved. Calculations were carried out in Gaussian 09 at the B3LYP/6-31G(d,p) level of the theory. The results indicate that the main pyrolysis products of methane and cyclohexane in hydrogen plasma are both hydrogen and acetylene, and the participation of active hydrogen atoms makes dehydrogenation reactions more favorable. H2 mainly comes from dehydrogenation process, while many reaction pathways are responsible for acetylene formation. During coal pyrolysis in hydrogen plasma, three main components in volatiles like aliphatic hydrocarbons, cycloalkanes and aromatic hydrocarbons lead to the formation of hydrogen and acetylene, but their contributions to products distribution are different.
基金Supported by the National Natural Science Foundation of China(Grant No.21476270,21306176,21776259,21276006)Scientific Research Launching Foundation of Zhejiang University of Technology(Grant No.G2817101103)
文摘Autoxidation of cycloalkanes (C5-C8) with molecular oxygen under catalyst-free and solvent-free conditions was conducted systematically for the first time, focusing on the autoxidation temperature and product distribution. The autoxidation of cyclopentane, cyclohexane, cycloheptane and cyclooctane occurs at 120 ℃, 130 ℃, 120 ℃, and 105 ℃ respectively, with obvious oxidized products formation. At 140 ℃, 145 ℃, 130 ℃ and 125 ℃, acceptable yields of the oxidized products could be obtained for them, and the oxidized product distributions were investigated in detail. The autoxidation of cycloalkanes follows the pseudo-first-order kinetic model and the apparent activation energies (Ea) for the autoxidation of cyclopentane and cyclohexane are 159.76 kJ. tool-1 and 86.75 kJ. mol-1 respectively. This study can act as an important reference in screen of suitable reaction temperature and comparison of the performance of various catalysts in the catalytic oxidation of cycloalkanes in the attempt to enhance the oxidized product selectivity.
文摘A combinatorial method based on the determination of the averaged weight of permutations controlling the chirality/achirality fittingness of 2n substitution sites of the monocyclic cycloalkane allows to obtain generalized functional equations for direct enumeration of enantiomers pairs and achiral skeletons of any derivatives of monocyclic cycloalkanes having heteromorphic alkyl substituents with the distinct length k with the empirical formula , wherein at least two alkyl groups??of the distinct size ?each. ?is the number of alkyl radicals ?of the system??verifying the relation . The integer sequences of enantiomer pairs and achiral skeletons are given for substituted derivatives of monocyclic cycloalkane for n = 3, 4 and k = 3, 4, 5. The composite stereoisomerism of this particular compound is also highlighted.
基金Supported by the Key Program of National Natural Science Foundation of China (No. 20737001)the National Science Foundation for Post-doctoral Scientists of China (No. 2003033486)
文摘Quantum chemistry parameters of 28 alkyl(1-phenylsulfonyl) cycloalkane-carboxy-lates were computed at the 6-31G* level in fully optimal manner using B3LYP method of density functional theory (DFT). With GQSARF2.0 program, the correlation equations that can predict n-octanol/water partition coefficient (lgKow) were developed using the structural and thermodynamic parameters of 28 alkyl(1-phenylsulfonyl) cycloalkane-carboxylates with experimental data of lgKow as theoretical descriptors; the correlation coefficient (R^2) was 0.9452 and the cross-validation squared correlation coefficient (Rcv^2) 0.9312. Furthermore, a four-variable model from MEDV was obtained, of which R2 = 0.9497 and Rov^2 =0.9388. The models were validated by variance inflation factor (VIF) and t-test. Cross-validation indicates that the correlation and predicting ability of the model based on both DFT method and MEDV are more advantageous than those obtained from semi-empirical AM1 method.
文摘Feasibility of dissolution and utilization of expanded polystyrene in cycloalkane solutions was investigated in this work. The dissolution process of expanded polystyrene in several cycloalkane solutions decalin, cyclohexane and methyl cyclohexane was studied. The effect of dissolution temperature, mechanical agitation, ultrasonic wave and stirring rate was studied under optimized conditions. Mass transfer coefficients were fitted. The results showed that the dissolution rate of expanded polystyrene in different cycloalkane solutions was ranked as decalin > methyl cyclohexane > cyclohexane;higher dissolution temperature and faster stirring rate could speed up the dissolution of expanded polystyrene;the effect of mechanical agitation was superior to ultrasonic condition;the solubility of top face was better than side face and under face.
文摘Octanol/water partition coefficients,adsorption coefficients for soils and sediments and acute toxicities to Daphnia magna of 28 alkyl (1-phenylsulfonyl) cycloalkane-carboxylates were measured. These properties were correlated by linear solvation energy relationship (LSER) and chromatographic retention data determined by reverse-phase high performance liquid chromatography (RP-HPLC). The accuracy and range of applicability of these two quantitative structure-activity relationship (QSAR) methods were compared in this paper.
基金supported by the National Key R&D Program of China(2022YFB4201802)the Xuzhou Basic Research Project(KC23018)+1 种基金the Fundamental Research Funds for the Central Universities(2023-00104)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Developing an energy supply-chain based on renewable biomass holds great potential to build a low carbon society.High-energy-density(HED)jet fuel,featuring unique fused/strained cycloalkanes,is of great significance for volume-limited military aircrafts,as their high density and combustion heat can extend flight duration and increase the payload.Therefore,the exploration of biomass-based routes towards HED fuel has drawn much attention over the past decade.Cycloaddition reaction features rapid construction of various carbocycles in an atom-and step-economical fashion.This elegant strategy has been widely applied in the manufacture of sustainable HED fuel.Here we carefully summarize the progress achieved in this fascinating area and the review is categorized by the cycloaddition patterns including[4+2],[2+2],[4+4],and[2+1]cycloadditions.Besides,the energy densities of the as-prepared biofuels and petroleumbased fuels(conventional Jet-A and advanced JP-10)are also compared.This review will provide important insights into rational design of new HED fuel with different ring-types/sizes and inspire the chemists to turn those literature studies into practical applications in military field.
文摘This article elaborates on the research achievements of domestic and foreign researchers in exploring the conversion pathways and reaction mechanisms of cyclohexane catalytic cracking in recent years.It analyzes the effects of different catalysts and process conditions on the conversion laws of cyclohexane,summarizes the conversion pathways of cyclohexane,and discusses the chemical mechanisms of several main reactions of cyclohexane in catalytic cracking,such as cracking,isomerization,hydrogen transfer,dehydrogenation,and alkylation;Several advanced characterization methods and common research methods were listed,and prospects for future development in this field were proposed based on existing research.