Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ...Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load.展开更多
Natural fiber composites have been proved to have the ability to replace the synthetic fiber composites in many structural applications. Unprecedented growth in the field of computational techniques has opened the doo...Natural fiber composites have been proved to have the ability to replace the synthetic fiber composites in many structural applications. Unprecedented growth in the field of computational techniques has opened the doors of analysis and simulation of composite materials under various environment.Modelling and simulation using various available softwares saves a lot of time and resources. In the present work, an attempt has been made to analyze the tensile behavior of jute fiber reinforced epoxy based polymer composite materials using the student version of commercially available finite element code Siemens PLM NX 10.0. In most of the structural applications, materials are required to have enough stiffness to resist the shape deformation under normal loading conditions. Therefore, emphasis is given to the load-deformation behavior of the developed composites. A 3-dimensional model of the test specimen was developed using ply-stacking method and the strain-stress values were verified by the available literature. The model showed a good agreement between the experimental and software results. Effect of ply angle, fiber percentage, fiber type, number of layers and weft fiber angle on the stiffness of laminate have been studied.展开更多
基金the financial support by the Council of Scientific&Industrial Research(CSIR)-Research Scheme,India(22/0809/2019-EMR-II)。
文摘Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load.
文摘Natural fiber composites have been proved to have the ability to replace the synthetic fiber composites in many structural applications. Unprecedented growth in the field of computational techniques has opened the doors of analysis and simulation of composite materials under various environment.Modelling and simulation using various available softwares saves a lot of time and resources. In the present work, an attempt has been made to analyze the tensile behavior of jute fiber reinforced epoxy based polymer composite materials using the student version of commercially available finite element code Siemens PLM NX 10.0. In most of the structural applications, materials are required to have enough stiffness to resist the shape deformation under normal loading conditions. Therefore, emphasis is given to the load-deformation behavior of the developed composites. A 3-dimensional model of the test specimen was developed using ply-stacking method and the strain-stress values were verified by the available literature. The model showed a good agreement between the experimental and software results. Effect of ply angle, fiber percentage, fiber type, number of layers and weft fiber angle on the stiffness of laminate have been studied.