A novel model was developed to theoretically evaluate the 02 adsorption on H-terminated Si(001)-(2×2×1) surface. The periodic boundary condition, the ultrasoft pseudopotentials technique based on density...A novel model was developed to theoretically evaluate the 02 adsorption on H-terminated Si(001)-(2×2×1) surface. The periodic boundary condition, the ultrasoft pseudopotentials technique based on density functional theory (DFT) with generalized gradient approxi,natior, (GGA) functional were applied in our ab initio calculations. By analyzing bonding energy oil site, the favourable adsorption site was determined. The calculations also predicted that the adsorption products should be Si=O and H2O. This theoretical study snpported the reaction mechanism provided by Kovalev et al, The results were also a base for further investigation of some more complex systems such as the oxida.tion on porous silicon surface.展开更多
The double Michael reactions between benzofuran-3-one or 1-indone and symmetric dienones in the presence of catalytic ionic liquids were successfully developed and spiro[benzofuran-2, 1′-cyclohexane]-3-one or spiro[c...The double Michael reactions between benzofuran-3-one or 1-indone and symmetric dienones in the presence of catalytic ionic liquids were successfully developed and spiro[benzofuran-2, 1′-cyclohexane]-3-one or spiro[cyclo- hexane-1,2′-indene]-1′,4(3′H)-dione derivatives containing a spiro quaternary stereogenic center, which widely exist in biologically active products and building blocks in organic synthesis, were obtained in excellent yields (up to 99%). This catalytic system was also extended to the double Michael reaction of less reactive 1-indone and the desired products were also obtained in 31%-62% yields. The catalytic system was highly active and efficient for a broad of substrates under mild conditions.展开更多
The(continuous) finite element approximations of different orders for the computation of the solution to electronic structures were proposed in some papers and the performance of these approaches is becoming appreciab...The(continuous) finite element approximations of different orders for the computation of the solution to electronic structures were proposed in some papers and the performance of these approaches is becoming appreciable and is now well understood.In this publication,the author proposes to extend this discretization for full-potential electronic structure calculations by combining the refinement of the finite element mesh,where the solution is most singular with the increase of the degree of the polynomial approximations in the regions where the solution is mostly regular.This combination of increase of approximation properties,done in an a priori or a posteriori manner,is well-known to generally produce an optimal exponential type convergence rate with respect to the number of degrees of freedom even when the solution is singular.The analysis performed here sustains this property in the case of Hartree-Fock and Kohn-Sham problems.展开更多
文摘A novel model was developed to theoretically evaluate the 02 adsorption on H-terminated Si(001)-(2×2×1) surface. The periodic boundary condition, the ultrasoft pseudopotentials technique based on density functional theory (DFT) with generalized gradient approxi,natior, (GGA) functional were applied in our ab initio calculations. By analyzing bonding energy oil site, the favourable adsorption site was determined. The calculations also predicted that the adsorption products should be Si=O and H2O. This theoretical study snpported the reaction mechanism provided by Kovalev et al, The results were also a base for further investigation of some more complex systems such as the oxida.tion on porous silicon surface.
文摘The double Michael reactions between benzofuran-3-one or 1-indone and symmetric dienones in the presence of catalytic ionic liquids were successfully developed and spiro[benzofuran-2, 1′-cyclohexane]-3-one or spiro[cyclo- hexane-1,2′-indene]-1′,4(3′H)-dione derivatives containing a spiro quaternary stereogenic center, which widely exist in biologically active products and building blocks in organic synthesis, were obtained in excellent yields (up to 99%). This catalytic system was also extended to the double Michael reaction of less reactive 1-indone and the desired products were also obtained in 31%-62% yields. The catalytic system was highly active and efficient for a broad of substrates under mild conditions.
文摘The(continuous) finite element approximations of different orders for the computation of the solution to electronic structures were proposed in some papers and the performance of these approaches is becoming appreciable and is now well understood.In this publication,the author proposes to extend this discretization for full-potential electronic structure calculations by combining the refinement of the finite element mesh,where the solution is most singular with the increase of the degree of the polynomial approximations in the regions where the solution is mostly regular.This combination of increase of approximation properties,done in an a priori or a posteriori manner,is well-known to generally produce an optimal exponential type convergence rate with respect to the number of degrees of freedom even when the solution is singular.The analysis performed here sustains this property in the case of Hartree-Fock and Kohn-Sham problems.