With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed s...With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator.The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades,and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator.According to the structural parameters of the cooling system,the Taguchi method is used to decouple the structural variables.The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed,and the appropriate cooling structure scheme is determined.展开更多
In order to prolong the life span of a turbo-generator plant and sustain its performance at high efficiency, it is subjected periodically to regular test to monitor the operational profile and efficiency of power conv...In order to prolong the life span of a turbo-generator plant and sustain its performance at high efficiency, it is subjected periodically to regular test to monitor the operational profile and efficiency of power conversion from mechanical energy to electrical energy. Analysis of these test data serves as a measure to indicate deviation from normal operation profile and deterioration of plant performance. This present work implemented the heat balance tests process to three turb- generator units in order to assess the harmony, consistency, and accuracy of results to establish parallel correlation for the test process. The test process involves carrying out a heat balance for the turbo-generators at 50%, 75% and 100% load respectively through the determination of the heat losses through the hydrogen coolers, bearing oil, seal oil and radiation and convention to the atmosphere. Some important results were presented in the paper.展开更多
The paper has analyazed the two kinds of errors in measurement of hydrogen humidityby psychrometer DHM - 2 in domestic power station at present. One is system error frompsychrometer defect, other is random error from ...The paper has analyazed the two kinds of errors in measurement of hydrogen humidityby psychrometer DHM - 2 in domestic power station at present. One is system error frompsychrometer defect, other is random error from non-steady hydrogen velocity in measurement. Psychrometer DHM - 2 is improved in order to dispelling these errors. The seleevesisolated air and heat are used, device determined hydrogen velocity is added. The resultsof practical measurement in power station show that relative error of hydrogen absolute humidity by improved psychrometer is decreased from original about 40% to less than 5%, thesteady and precision of measurement are greatly increased.展开更多
基金supported in part by the“Chunhui Plan”Collaborative Research Project of Chinese Ministry of Education under Grant HZKY20220604by the National Natural Science Foundation of China under Grant 52107007。
文摘With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator.The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades,and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator.According to the structural parameters of the cooling system,the Taguchi method is used to decouple the structural variables.The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed,and the appropriate cooling structure scheme is determined.
文摘In order to prolong the life span of a turbo-generator plant and sustain its performance at high efficiency, it is subjected periodically to regular test to monitor the operational profile and efficiency of power conversion from mechanical energy to electrical energy. Analysis of these test data serves as a measure to indicate deviation from normal operation profile and deterioration of plant performance. This present work implemented the heat balance tests process to three turb- generator units in order to assess the harmony, consistency, and accuracy of results to establish parallel correlation for the test process. The test process involves carrying out a heat balance for the turbo-generators at 50%, 75% and 100% load respectively through the determination of the heat losses through the hydrogen coolers, bearing oil, seal oil and radiation and convention to the atmosphere. Some important results were presented in the paper.
文摘The paper has analyazed the two kinds of errors in measurement of hydrogen humidityby psychrometer DHM - 2 in domestic power station at present. One is system error frompsychrometer defect, other is random error from non-steady hydrogen velocity in measurement. Psychrometer DHM - 2 is improved in order to dispelling these errors. The seleevesisolated air and heat are used, device determined hydrogen velocity is added. The resultsof practical measurement in power station show that relative error of hydrogen absolute humidity by improved psychrometer is decreased from original about 40% to less than 5%, thesteady and precision of measurement are greatly increased.