When discovering the potential of canards flying in 4-dimensional slow-fast system with a bifurcation parameter, the key notion “symmetry” plays an important role. It is of one parameter on slow vector field. Then, ...When discovering the potential of canards flying in 4-dimensional slow-fast system with a bifurcation parameter, the key notion “symmetry” plays an important role. It is of one parameter on slow vector field. Then, it should be determined to introduce parameters to all slow/fast vectors. It is, however, there might be no way to explore for another potential in this system, because the geometrical structure is quite different from the system with one parameter. Even in this system, the “symmetry” is also useful to obtain the potentials classified by R. Thom. In this paper, via the coordinates changing, the possible way to explore for the potential will be shown. As it is analyzed on “hyper finite time line”, or done by using “non-standard analysis”, it is called “Hyper Catastrophe”. In the slow-fast system which includes a very small parameter , it is difficult to do precise analysis. Thus, it is useful to get the orbits as a singular limit. When trying to do simulations, it is also faced with difficulty due to singularity. Using very small time intervals corresponding small , we shall overcome the difficulty, because the difference equation on the small time interval adopts the standard differential equation. These small intervals are defined on hyper finite number N, which is nonstandard. As and the intervals are linked to use 1/N, the simulation should be done exactly.展开更多
The polarizability(α) and second hyperpolarizability(γ) were systemically investigated for singlet diradical complex involving X(X=B,Al,Ga) atom.The results show that both the α and γ can be effectively tune...The polarizability(α) and second hyperpolarizability(γ) were systemically investigated for singlet diradical complex involving X(X=B,Al,Ga) atom.The results show that both the α and γ can be effectively tuned by varying the distance R(between compound A and a water molecule) and acceptor atom X.The lone pair of electrons from the O atom of the water molecule entered into the vacant p orbital of atom X,which increased the diradical character and led to the increase of the α and γ values.Furthermore,the polarizable continuum model(PCM) was used to test the effects of H2O and CCl4 solvents on the α and γ values.Both the α and γ values of the studied diradical complex 1a(1b,1c) in H2O and CCl4 were uniformly enhanced.And the solvent effects of H2O on either α or γ were larger than those of CCl4.展开更多
A concise analytical model for the static dipole polarizability of ionized atoms and molecules is created for the first time.As input,it requires,alongside the polarizability of neutral counterpart of a given ion,only...A concise analytical model for the static dipole polarizability of ionized atoms and molecules is created for the first time.As input,it requires,alongside the polarizability of neutral counterpart of a given ion,only the charge and elemental composition.This physically motivated semiempirical model is based on a number of established regularities in polarizability of charged monatomic and polyatomic compounds.In order to adjust it,the results of quantum chemistry calculations and gas-phase measurements available for a broad range of ionized multielectron species are employed.To counteract the appreciable bias in the literature data toward polarizability of monoatomic ions,for some molecular ions of general concern the results of the authors'own density functional theory calculations are additionally invoked.A total of 541 data points are used to optimize the model.It is demonstrated that the model we suggested has reasonable(given the substantial uncertainties of the reference data)accuracy in predicting the static isotropic polarizability of arbitrarily charged ions of any size and atomic composition.The resulting polarizability estimates are found to achieve a coefficient of determination of 0.93 for the assembled data set.The created analytic tool is universally applicable and might be advantageous for some applications where there is an urgent need for rapid low-cost evaluation of the static gas-phase polarizability of ionized atoms and molecules.This is especially relevant to constructing the complex models of nonequilibrium chemical kinetics aimed at precisely describing the observable refractive index(dielectric permittivity)of plasma flows.The data sets that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.07526.展开更多
Hyperoside is a bioactive flavonoid galactoside in both medicinal and edible plants.It plays an important physiological role in the growth of flower buds.However,the hyperoside biosynthesis pathway has not been system...Hyperoside is a bioactive flavonoid galactoside in both medicinal and edible plants.It plays an important physiological role in the growth of flower buds.However,the hyperoside biosynthesis pathway has not been systematically elucidated in plants,including its original source,Hypericaceae.Our group found abundant hyperoside in the flower buds of Hypericum monogynum,and we sequenced its transcriptome to study the biosynthetic mechanism of hyperoside.After gene screening and functional verification,four kinds of key enzymes were identified.Specifically,HmF3Hs(flavanone 3-hydroxylases)and HmFLSs(flavonol synthases)could catalyze flavanones into dihydroflavonols,as well as catalyzing dihydroflavonols into flavonols.HmFLSs could also convert flavanones into flavonols and flavones with varying efficiencies.HmF3′H(flavonoid 3′-hydroxylase)was found to act broadly on 4′-hydroxyl flavonoids to produce 3′,4′-diydroxylated flavanones,dihydroflavonols,flavonols,and flavones.HmGAT(flavonoid 3-O-galactosyltransferase)would transform flavonols into the corresponding 3-O-galactosides,including hyperoside.The parallel hyperoside biosynthesis routes were thus depicted,one of which was successfully reconstructed in Escherichia coli BL21(DE3)by feeding naringenin,resulting in a hyperoside yield of 25 mg/l.Overall,this research not only helped us understand the interior catalytic mechanism of hyperoside in H.monogynum concerning flower development and bioactivity,but also provided valuable insights into these enzyme families.展开更多
We present a semiempirical analytical model for the static polarizability of electronically excited atoms and molecules,which requires very few readily accessible input data,including the ground-state polarizability,e...We present a semiempirical analytical model for the static polarizability of electronically excited atoms and molecules,which requires very few readily accessible input data,including the ground-state polarizability,elemental composition,ionization potential,and spin multiplicities of excited and ground states.This very simple model formulated in a semiclassical framework is based on a number of observed trends in polarizability of electronically excited compounds.To adjust the model,both accurate theoretical predictions and reliable measurements previously reported elsewhere for a broad range of multielectron species in the gas phase are utilized.For some representative compounds of general concern that have not yet attracted sufficient research interest,the results of our multireference second-order perturbation theory calculations are additionally engaged.We show that the model we developed has reasonable(given the considerable uncertainties in the reference data)accuracy in predicting the static polarizability of electronically excited species of arbitrary size and excitation energy.These findings can be useful for many applications,where there is a need for inexpensive and quick assessments of the static gas-phase polarizability of excited electronic states,in particular,when building the complex nonequilibrium kinetic models to describe the observed optical refractivity(dielectric permittivity)of nonthermal reacting gas flows.展开更多
The second-order optical nonlinearity of CdS nanoparticles with different diameters of 28.0, 30.0, 31.5, 50.0, and 91.0 A was studied by hyper-Rayleigh scattering technique. Results show that the first-order hyperpola...The second-order optical nonlinearity of CdS nanoparticles with different diameters of 28.0, 30.0, 31.5, 50.0, and 91.0 A was studied by hyper-Rayleigh scattering technique. Results show that the first-order hyperpolarizability P value per CdS partiele decreases as size is reduced to diameter of 31.5 A; however, as CdS size further decreases, this trend is reversed and (J value increases. Substantially, the normalized P value per CdS formula unit, β0, exhibits systematic enhancement with decreasing size. This phenomenon is interpreted in terms of a so-called surfaee contribution mechanism.展开更多
In the Digital World scenario,the confidentiality of information in video transmission plays an important role.Chaotic systems have been shown to be effective for video signal encryption.To improve video transmission ...In the Digital World scenario,the confidentiality of information in video transmission plays an important role.Chaotic systems have been shown to be effective for video signal encryption.To improve video transmission secrecy,compressive encryption method is proposed to accomplish compression and encryption based on fractional order hyper chaotic system that incorporates Compressive Sensing(CS),pixel level,bit level scrambling and nucleotide Sequences operations.The measurement matrix generates by the fractional order hyper chaotic system strengthens the efficiency of the encryption process.To avoid plain text attack,the CS measurement is scrambled to its pixel level,bit level scrambling decreases the similarity between the adjacent measurements and the nucleotide sequence operations are done on the scrambled bits,increasing the encryption.Two stages are comprised in the reconstruction technique,the first stage uses the intra-frame similarity and offers robust preliminary retrieval for each frame,and the second stage iteratively improves the efficiency of reconstruction by integrating inter frame Multi Hypothesis(MH)estimation and weighted residual sparsity modeling.In each iteration,the residual coefficient weights are modified using a mathematical approach based on the MH predictions,and the Split Bregman iteration algorithm is defined to resolve weighted l1 regularization.Experimental findings show that the proposed algorithm provides good compression of video coupled with an efficient encryption method that is resistant to multiple attacks.展开更多
文摘When discovering the potential of canards flying in 4-dimensional slow-fast system with a bifurcation parameter, the key notion “symmetry” plays an important role. It is of one parameter on slow vector field. Then, it should be determined to introduce parameters to all slow/fast vectors. It is, however, there might be no way to explore for another potential in this system, because the geometrical structure is quite different from the system with one parameter. Even in this system, the “symmetry” is also useful to obtain the potentials classified by R. Thom. In this paper, via the coordinates changing, the possible way to explore for the potential will be shown. As it is analyzed on “hyper finite time line”, or done by using “non-standard analysis”, it is called “Hyper Catastrophe”. In the slow-fast system which includes a very small parameter , it is difficult to do precise analysis. Thus, it is useful to get the orbits as a singular limit. When trying to do simulations, it is also faced with difficulty due to singularity. Using very small time intervals corresponding small , we shall overcome the difficulty, because the difference equation on the small time interval adopts the standard differential equation. These small intervals are defined on hyper finite number N, which is nonstandard. As and the intervals are linked to use 1/N, the simulation should be done exactly.
基金Supported by the National Natural Science Foundation of China(No.20873017)the Natural Science Foundation of Jilin Province,China(No.20101154)
文摘The polarizability(α) and second hyperpolarizability(γ) were systemically investigated for singlet diradical complex involving X(X=B,Al,Ga) atom.The results show that both the α and γ can be effectively tuned by varying the distance R(between compound A and a water molecule) and acceptor atom X.The lone pair of electrons from the O atom of the water molecule entered into the vacant p orbital of atom X,which increased the diradical character and led to the increase of the α and γ values.Furthermore,the polarizable continuum model(PCM) was used to test the effects of H2O and CCl4 solvents on the α and γ values.Both the α and γ values of the studied diradical complex 1a(1b,1c) in H2O and CCl4 were uniformly enhanced.And the solvent effects of H2O on either α or γ were larger than those of CCl4.
基金Project supported by the grant of the Russian Science Foundation(Project No.22-29-00124)。
文摘A concise analytical model for the static dipole polarizability of ionized atoms and molecules is created for the first time.As input,it requires,alongside the polarizability of neutral counterpart of a given ion,only the charge and elemental composition.This physically motivated semiempirical model is based on a number of established regularities in polarizability of charged monatomic and polyatomic compounds.In order to adjust it,the results of quantum chemistry calculations and gas-phase measurements available for a broad range of ionized multielectron species are employed.To counteract the appreciable bias in the literature data toward polarizability of monoatomic ions,for some molecular ions of general concern the results of the authors'own density functional theory calculations are additionally invoked.A total of 541 data points are used to optimize the model.It is demonstrated that the model we suggested has reasonable(given the substantial uncertainties of the reference data)accuracy in predicting the static isotropic polarizability of arbitrarily charged ions of any size and atomic composition.The resulting polarizability estimates are found to achieve a coefficient of determination of 0.93 for the assembled data set.The created analytic tool is universally applicable and might be advantageous for some applications where there is an urgent need for rapid low-cost evaluation of the static gas-phase polarizability of ionized atoms and molecules.This is especially relevant to constructing the complex models of nonequilibrium chemical kinetics aimed at precisely describing the observable refractive index(dielectric permittivity)of plasma flows.The data sets that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.07526.
基金supported by the National Natural Science Foundation of China(No.32070389)the‘Double First-Class’University project of China Pharmaceutical University(CPU2022QZ29).
文摘Hyperoside is a bioactive flavonoid galactoside in both medicinal and edible plants.It plays an important physiological role in the growth of flower buds.However,the hyperoside biosynthesis pathway has not been systematically elucidated in plants,including its original source,Hypericaceae.Our group found abundant hyperoside in the flower buds of Hypericum monogynum,and we sequenced its transcriptome to study the biosynthetic mechanism of hyperoside.After gene screening and functional verification,four kinds of key enzymes were identified.Specifically,HmF3Hs(flavanone 3-hydroxylases)and HmFLSs(flavonol synthases)could catalyze flavanones into dihydroflavonols,as well as catalyzing dihydroflavonols into flavonols.HmFLSs could also convert flavanones into flavonols and flavones with varying efficiencies.HmF3′H(flavonoid 3′-hydroxylase)was found to act broadly on 4′-hydroxyl flavonoids to produce 3′,4′-diydroxylated flavanones,dihydroflavonols,flavonols,and flavones.HmGAT(flavonoid 3-O-galactosyltransferase)would transform flavonols into the corresponding 3-O-galactosides,including hyperoside.The parallel hyperoside biosynthesis routes were thus depicted,one of which was successfully reconstructed in Escherichia coli BL21(DE3)by feeding naringenin,resulting in a hyperoside yield of 25 mg/l.Overall,this research not only helped us understand the interior catalytic mechanism of hyperoside in H.monogynum concerning flower development and bioactivity,but also provided valuable insights into these enzyme families.
基金supported by the grant of the Russian Science Foundation(project No.22-29-00124)。
文摘We present a semiempirical analytical model for the static polarizability of electronically excited atoms and molecules,which requires very few readily accessible input data,including the ground-state polarizability,elemental composition,ionization potential,and spin multiplicities of excited and ground states.This very simple model formulated in a semiclassical framework is based on a number of observed trends in polarizability of electronically excited compounds.To adjust the model,both accurate theoretical predictions and reliable measurements previously reported elsewhere for a broad range of multielectron species in the gas phase are utilized.For some representative compounds of general concern that have not yet attracted sufficient research interest,the results of our multireference second-order perturbation theory calculations are additionally engaged.We show that the model we developed has reasonable(given the considerable uncertainties in the reference data)accuracy in predicting the static polarizability of electronically excited species of arbitrary size and excitation energy.These findings can be useful for many applications,where there is a need for inexpensive and quick assessments of the static gas-phase polarizability of excited electronic states,in particular,when building the complex nonequilibrium kinetic models to describe the observed optical refractivity(dielectric permittivity)of nonthermal reacting gas flows.
基金supposed by the National Natural Science Foundation of China(Nos.50202009,10074023)the National Postdoctoral Foundation(No.2002031222).
文摘The second-order optical nonlinearity of CdS nanoparticles with different diameters of 28.0, 30.0, 31.5, 50.0, and 91.0 A was studied by hyper-Rayleigh scattering technique. Results show that the first-order hyperpolarizability P value per CdS partiele decreases as size is reduced to diameter of 31.5 A; however, as CdS size further decreases, this trend is reversed and (J value increases. Substantially, the normalized P value per CdS formula unit, β0, exhibits systematic enhancement with decreasing size. This phenomenon is interpreted in terms of a so-called surfaee contribution mechanism.
文摘In the Digital World scenario,the confidentiality of information in video transmission plays an important role.Chaotic systems have been shown to be effective for video signal encryption.To improve video transmission secrecy,compressive encryption method is proposed to accomplish compression and encryption based on fractional order hyper chaotic system that incorporates Compressive Sensing(CS),pixel level,bit level scrambling and nucleotide Sequences operations.The measurement matrix generates by the fractional order hyper chaotic system strengthens the efficiency of the encryption process.To avoid plain text attack,the CS measurement is scrambled to its pixel level,bit level scrambling decreases the similarity between the adjacent measurements and the nucleotide sequence operations are done on the scrambled bits,increasing the encryption.Two stages are comprised in the reconstruction technique,the first stage uses the intra-frame similarity and offers robust preliminary retrieval for each frame,and the second stage iteratively improves the efficiency of reconstruction by integrating inter frame Multi Hypothesis(MH)estimation and weighted residual sparsity modeling.In each iteration,the residual coefficient weights are modified using a mathematical approach based on the MH predictions,and the Split Bregman iteration algorithm is defined to resolve weighted l1 regularization.Experimental findings show that the proposed algorithm provides good compression of video coupled with an efficient encryption method that is resistant to multiple attacks.