k holomorphic functions are a type of generation of holomorphic functions.In this paper,a nonlinear boundary value problem for k holomorphic functions is primarily discussed on generalized polycylinders in C^(2).The e...k holomorphic functions are a type of generation of holomorphic functions.In this paper,a nonlinear boundary value problem for k holomorphic functions is primarily discussed on generalized polycylinders in C^(2).The existence of the solution for the problem is studied in detail with the help of the boundary properties of Cauchy type singular integral operators with a k holomorphic kernel.Furthermore,the integral representation for the solution is obtained.展开更多
The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0...The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.展开更多
We discuss the linear conjugate boundary value problems on the unit circle and the real axis. We obtain some Fredholm integral equations. Using thess equations we discuss the solvable conditions on these problems and ...We discuss the linear conjugate boundary value problems on the unit circle and the real axis. We obtain some Fredholm integral equations. Using thess equations we discuss the solvable conditions on these problems and we also give a direct method for the extension problems on the real axis.展开更多
In this article, the author characterizes orthogonal polynomials on an arbitrary smooth Jordan curve by a semi-conjugate matrix boundary value problem, which is different from the Riemann-Hilbert problems that appear ...In this article, the author characterizes orthogonal polynomials on an arbitrary smooth Jordan curve by a semi-conjugate matrix boundary value problem, which is different from the Riemann-Hilbert problems that appear in the theory of Riemann -Hilbert approach to asymptotic analysis for orthogonal polynomials on a real interval introduced by Fokas, Its, and Kitaev and on the unit circle introduced by Baik, Deift, and Johansson. The author hopes that their characterization may be applied to asymptotic analysis for general orthogonal polynomials by combining with a new extension of steepest descent method which we are looking for.展开更多
This paper discusses the singular ( n\|1,1 ) conjugate boundary value problem as follows by using a fixed point index theorem in cones[HL(2:1,Z;2,Z]u (n) (t)+a(t)f(u(w(t)))=0,(0<t<1), u(t)=φ(t),(-τ≤t&l...This paper discusses the singular ( n\|1,1 ) conjugate boundary value problem as follows by using a fixed point index theorem in cones[HL(2:1,Z;2,Z]u (n) (t)+a(t)f(u(w(t)))=0,(0<t<1), u(t)=φ(t),(-τ≤t<0), u (j) (0)=u(1)=0,(1≤j≤n-2).Effort is devoted to give some sufficient conditions for which the equation has at least two positive solutions.An example to illustrate the application of this theorem is given. [FQ(6*2。39,X-W]展开更多
In this paper, solutions of Riemann boundary value problems with nodes are extended to the case where they may have singularties of high order at the nodes. Moreover, further extension is discussed when the free term ...In this paper, solutions of Riemann boundary value problems with nodes are extended to the case where they may have singularties of high order at the nodes. Moreover, further extension is discussed when the free term of the problem involved also possesses singularities at the nodes. As an application, certain singular integral equation is discussed.展开更多
By the fxed point index theory, the existence of one, two and three positive solutions to(k, n-k) conjugate boundary value problems is obtained, where n 】 2, 1 ≤ k ≤ n-1, the nonlinear term may be noncontinuous and...By the fxed point index theory, the existence of one, two and three positive solutions to(k, n-k) conjugate boundary value problems is obtained, where n 】 2, 1 ≤ k ≤ n-1, the nonlinear term may be noncontinuous and singular at any point of [0,1]. Our results extend some of the existent results.展开更多
In this paper, Method of Kobayashi Potential is used to determine the scattering behavior of a strip which is placed at the air-complex conjugate medium interface. And discussion is presented that how the complex conj...In this paper, Method of Kobayashi Potential is used to determine the scattering behavior of a strip which is placed at the air-complex conjugate medium interface. And discussion is presented that how the complex conjugate medium mod-ify the scattering properties of the strip. A comparison is also given with that if we replace the conjugate medium with standard dielectric medium. E-polarized electromagnetic plane wave is supposed to be obliquely incident upon the ge-ometry. Scattered fields in both the half spaces are supposed in terms of unknown weighting functions. Discontinuous properties of Weber-Schafheitlin integral and orthogonal properties of Jacobi’s polynomials are used to determine these unknown weighting functions. Far scattered fields have been calculated using Saddle Point Method and computed for different parameters of interest.展开更多
By the Schauder fixed point theory,this paper establishes the existence of positive solutions to a(k,n k) m-point boundary value problem.We show that there exists a positive constant b such that the problem has at lea...By the Schauder fixed point theory,this paper establishes the existence of positive solutions to a(k,n k) m-point boundary value problem.We show that there exists a positive constant b such that the problem has at least one positive solution when the homogeneous boundary parameter is smaller than b,and no positive solution when this parameter is greater than b.展开更多
In this paper,a class of inverse boundary value problems for(λ,1)bi-analytic functions is given.Using the method of Riemann boundary value problem for analytic functions,the conditions of solvability and the expressi...In this paper,a class of inverse boundary value problems for(λ,1)bi-analytic functions is given.Using the method of Riemann boundary value problem for analytic functions,the conditions of solvability and the expression of the solutions for the inverse problems are obtained.展开更多
In this article, we introduce higher order conjugate Poisson and Poisson kernels, which are higher order analogues of the classical conjugate Poisson and Poisson kernels, as well as the polyharmonic fundamental soluti...In this article, we introduce higher order conjugate Poisson and Poisson kernels, which are higher order analogues of the classical conjugate Poisson and Poisson kernels, as well as the polyharmonic fundamental solutions, and define multi-layer potentials in terms of the Poisson field and the polyharmonic fundamental solutions, in which the former is formed by the higher order conjugate Poisson and the Poisson kernels. Then by the multi-layer potentials, we solve three classes of boundary value problems(i.e., Dirichlet, Neumann and regularity problems) with L^p boundary data for polyharmonic equations in Lipschitz domains and give integral representation(or potential) solutions of these problems.展开更多
基金the NSF of China(11571089,11871191)the NSF of Henan Province(222300420397)+1 种基金the NSF of Hebei Province(A2022208007)the Key Foundation of Hebei Normal University(L2018Z01)。
文摘k holomorphic functions are a type of generation of holomorphic functions.In this paper,a nonlinear boundary value problem for k holomorphic functions is primarily discussed on generalized polycylinders in C^(2).The existence of the solution for the problem is studied in detail with the help of the boundary properties of Cauchy type singular integral operators with a k holomorphic kernel.Furthermore,the integral representation for the solution is obtained.
文摘The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.
基金Supported by the National Natural Science Foundation of China (10471107)
文摘We discuss the linear conjugate boundary value problems on the unit circle and the real axis. We obtain some Fredholm integral equations. Using thess equations we discuss the solvable conditions on these problems and we also give a direct method for the extension problems on the real axis.
基金RFDP of Higher Education(20060486001)NNSF of China(10471107)
文摘In this article, the author characterizes orthogonal polynomials on an arbitrary smooth Jordan curve by a semi-conjugate matrix boundary value problem, which is different from the Riemann-Hilbert problems that appear in the theory of Riemann -Hilbert approach to asymptotic analysis for orthogonal polynomials on a real interval introduced by Fokas, Its, and Kitaev and on the unit circle introduced by Baik, Deift, and Johansson. The author hopes that their characterization may be applied to asymptotic analysis for general orthogonal polynomials by combining with a new extension of steepest descent method which we are looking for.
基金Supported by the NSF of Guangdong Province!( 980 0 1 8) Higher Education Bureau!( 1 99873)
文摘This paper discusses the singular ( n\|1,1 ) conjugate boundary value problem as follows by using a fixed point index theorem in cones[HL(2:1,Z;2,Z]u (n) (t)+a(t)f(u(w(t)))=0,(0<t<1), u(t)=φ(t),(-τ≤t<0), u (j) (0)=u(1)=0,(1≤j≤n-2).Effort is devoted to give some sufficient conditions for which the equation has at least two positive solutions.An example to illustrate the application of this theorem is given. [FQ(6*2。39,X-W]
文摘In this paper, solutions of Riemann boundary value problems with nodes are extended to the case where they may have singularties of high order at the nodes. Moreover, further extension is discussed when the free term of the problem involved also possesses singularities at the nodes. As an application, certain singular integral equation is discussed.
基金supported by the National Natural Science Foundation of China(11171088)the Natural Science Foundation of Hebei Province(A2013208108)the Foundation of Hebei University of Science and Technology(XI2013060)
文摘By the fxed point index theory, the existence of one, two and three positive solutions to(k, n-k) conjugate boundary value problems is obtained, where n 】 2, 1 ≤ k ≤ n-1, the nonlinear term may be noncontinuous and singular at any point of [0,1]. Our results extend some of the existent results.
文摘In this paper, Method of Kobayashi Potential is used to determine the scattering behavior of a strip which is placed at the air-complex conjugate medium interface. And discussion is presented that how the complex conjugate medium mod-ify the scattering properties of the strip. A comparison is also given with that if we replace the conjugate medium with standard dielectric medium. E-polarized electromagnetic plane wave is supposed to be obliquely incident upon the ge-ometry. Scattered fields in both the half spaces are supposed in terms of unknown weighting functions. Discontinuous properties of Weber-Schafheitlin integral and orthogonal properties of Jacobi’s polynomials are used to determine these unknown weighting functions. Far scattered fields have been calculated using Saddle Point Method and computed for different parameters of interest.
文摘By the Schauder fixed point theory,this paper establishes the existence of positive solutions to a(k,n k) m-point boundary value problem.We show that there exists a positive constant b such that the problem has at least one positive solution when the homogeneous boundary parameter is smaller than b,and no positive solution when this parameter is greater than b.
基金Supported by the Natural Science Foundation of Fujian Province(2020J01322)
文摘In this paper,a class of inverse boundary value problems for(λ,1)bi-analytic functions is given.Using the method of Riemann boundary value problem for analytic functions,the conditions of solvability and the expression of the solutions for the inverse problems are obtained.
基金National Natural Science Foundation of China (Grant No. 11401254)。
文摘In this article, we introduce higher order conjugate Poisson and Poisson kernels, which are higher order analogues of the classical conjugate Poisson and Poisson kernels, as well as the polyharmonic fundamental solutions, and define multi-layer potentials in terms of the Poisson field and the polyharmonic fundamental solutions, in which the former is formed by the higher order conjugate Poisson and the Poisson kernels. Then by the multi-layer potentials, we solve three classes of boundary value problems(i.e., Dirichlet, Neumann and regularity problems) with L^p boundary data for polyharmonic equations in Lipschitz domains and give integral representation(or potential) solutions of these problems.