Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant...Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.展开更多
Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and hi...Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and high-salinity low permeability reservoirs.Consequently,a novel conformance control system HPF-Co gel,based on high-temperature stabilizer(CoCl_(2)·H_(2)O,CCH)is developed.The HPF-Co bulk gel has better performances with high temperature(120℃)and high salinity(1×10^(5)mg/L).According to Sydansk coding system,the gel strength of HPF-Co with CCH is increased to code G.The dehydration rate of HPF-Co gel is 32.0%after aging for 150 d at 120℃,showing excellent thermal stability.The rheological properties of HPF gel and HPF-Co gel are also studied.The results show that the storage modulus(G′)of HPF-Co gel is always greater than that of HPF gel.The effect of CCH on the microstructure of the gel is studied.The results show that the HPF-Co gel with CCH has a denser gel network,and the diameter of the three-dimensional network skeleton is 1.5-3.5μm.After 90 d of aging,HPF-Co gel still has a good three-dimensional structure.Infrared spectroscopy results show that CCH forms coordination bonds with N and O atoms in the gel amide group,which can suppress the vibration of cross-linked sites and improve the stability at high temperature.Fractured core plugging test determines the optimized polymer gel injection strategy and injection velocity with HPF-Co bulk gel system,plugging rate exceeding 98%.Moreover,the results of subsequent waterflooding recovery can be improved by 17%.展开更多
The resistivity difference between oil and gas layers and the water layers in low contrast tight sandstone reservoirs is subtle. Fluid identification and saturation calculation based on conventional logging methods ar...The resistivity difference between oil and gas layers and the water layers in low contrast tight sandstone reservoirs is subtle. Fluid identification and saturation calculation based on conventional logging methods are facing challenges in such reservoirs. In this paper, a new method is proposed for fluid identification and saturation calculation in low contrast tight sandstone reservoirs. First, a model for calculating apparent formation water resistivity is constructed, which takes into account the influence of shale on the resistivity calculation and avoids apparent formation water resistivity abnormal values.Based on the distribution of the apparent formation water resistivity obtained by the new model, the water spectrum is determined for fluid identification in low contrast tight sandstone reservoirs.Following this, according to the average, standard deviation, and endpoints of the water spectrum, a new four-parameter model for calculating reservoir oil and gas saturation is built. The methods proposed in this paper are applied to the low contrast tight sandstone reservoirs in the Q4 formation of the X53 block and X70 block in the south of Songliao Basin, China. The results show that the water spectrum method can effectively distinguish oil-water layers and water layers in the study area. The standard deviation of the water spectrum in the oil-water layer is generally greater than that in the water layer. The new four-parameter model yields more accurate oil and gas saturation. These findings verify the effectiveness of the proposed methods.展开更多
The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example....The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers.展开更多
CO_(2) flooding is a vital development method for enhanced oil recovery in low-permeability reservoirs,However,micro-fractures are developed in low-permeability reservoirs,which are essential oil flow channels but can...CO_(2) flooding is a vital development method for enhanced oil recovery in low-permeability reservoirs,However,micro-fractures are developed in low-permeability reservoirs,which are essential oil flow channels but can also cause severe CO_(2) gas channeling problems.Therefore,anti-gas channeling is a necessary measure to improve the effect of CO_(2) flooding.The kind of anti-gas channeling refers to the plugging of fractures in the deep formation to prevent CO_(2) gas channeling,which is different from the wellbore leakage.Polymer microspheres have the characteristics of controllable deep plugging,which can achieve the profile control of low-permeability fractured reservoirs.In acidic environments with supercritical CO_(2),traditional polymer microspheres have poor expandability and plugging properties.Based on previous work,a systematic evaluation of the expansion performance,dispersion rheological properties,stability,deep migration,anti-CO_(2) channeling and enhanced oil recovery ability of a novel acid-resistant polymer microsphere(DCNPM-A)was carried out under CQ oilifield conditions(salinity of85,000 mg/L,80℃,pH=3).The results show that the DCNPM-A microsphere had a better expansion performance than the traditional microsphere,with a swelling rate of 13.5.The microsphere dispersion with a concentration of 0.1%-0.5%had the advantages of low viscosity,high dispersion and good injectability in the low permeability fractured core.In the acidic environment of supercritical CO_(2),DCNPM-A microspheres showed excellent stability and could maintain strength for over 60 d with less loss.In core experiments,DCNPM-A microspheres exhibited delayed swelling characteristics and could effectively plug deep formations.With a plugging rate of 95%,the subsequent enhanced oil recovery of CO_(2) flooding could reach 21.03%.The experimental results can provide a theoretical basis for anti-CO_(2)channeling and enhanced oil recovery in low-permeability fractured reservoirs.展开更多
In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,second...In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.展开更多
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
Low-salinity flooding has been extensively investigated. However, the effects of several variables, such as mineralogical composition, have been neglected. In this regard, the main objective here was to optimize low-s...Low-salinity flooding has been extensively investigated. However, the effects of several variables, such as mineralogical composition, have been neglected. In this regard, the main objective here was to optimize low-salinity water flooding of reservoirs with a wide range of rock mineralogy. Five different brines were determined in reservoirs with different mineral compositions. The mineral composition consisted of limestone and dolomite and the mineralogy varied between 0 and 100% limestone content. The results indicated that the optimum mineralogical system consists of 50% limestone and 50% dolomite flooded with 100% diluted formation brine. Additionally, reservoir mineral composition plays a significant role in the performance of low-salinity water flooding. The findings here will improve our understanding of rock composition effects on the performance of low-salinity water flooding and provide the industry with data that can scientifically improve process optimization.展开更多
Carbonate reservoir characterization and estimation of fluid saturation seem more challenging in the low resistivity pay zone (LRPZ). The Lower Cretaceous Buwaib Formation is important reservoir in the Persian Gulf. T...Carbonate reservoir characterization and estimation of fluid saturation seem more challenging in the low resistivity pay zone (LRPZ). The Lower Cretaceous Buwaib Formation is important reservoir in the Persian Gulf. The formation in the Salman Field is divided into three reservoir zones and four barriers and tight zones. These reservoir zones show low resistivity characteristics, high fluid saturation, but good oil production. In some intervals resistivity responses reach less than 1 ohm•m. Petrophysical properties measured from laboratory and logging tools have been combined with thin section X-ray diffraction (XRD) and PNN (Pulse Neutron Neutron). Geological studies define presence of 8 facies from wackeston to packstone. In general, reservoir potential of the Buwaib Formation is under influenced by the development of lithocodium mound facies that along with moderate to high porosity intervals. Micritization and pyritization of digenetic process along with clay-coated grains, carbonate with interstitial dispersed clay have conspicuous impact on LRPZ. Based on XRD analysis, Montmorillonite and Kaolinite of main clays types have high CEC and greater impact on lowering resistivity. To describe pore systems of rocks, the Lønøy method applied to address pore throat sizes which contain mudstone micro porosity related to lithocodium mound facies and uniform interparticle at class 3 Lucia as pore size varies from 0.2 to 10 micron. Some constraints were defined to estimate reliable water saturation that checked by sigma logs. Water saturation is 42%, 34% and 40% respectively in BL1, BL2 and BL3 zones.展开更多
In order to study the micro genetic mechanism and main geological controlling factors of low resistivity reservoir in NgIII formation of X oilfield in Bohai sea in China, the clay mineral composition, irreducible wate...In order to study the micro genetic mechanism and main geological controlling factors of low resistivity reservoir in NgIII formation of X oilfield in Bohai sea in China, the clay mineral composition, irreducible water saturation, salinity and conductive minerals of low resistivity reservoir were studied by using the data of core, cast thin section and analysis, and compared with normal resistivity reservoir. At the same time, the control effect of sedimentary environment on low resistivity reservoir was discussed. The results show that the additional conductivity of high bound water content and high montmorillonite content in the reservoir together leads to the significant reduction of reservoir resistivity, which is the main microscopic cause of the formation of low resistance, and is mainly controlled by the sedimentary background such as paleoclimate and sedimentary cycle. During the deposition period of NgIII formation, the paleoclimate was dry and cold, and it was at the end of the water advance of the medium-term sedimentary cycle. The hydrodynamic force of the river channel was weak, the carrying capacity of the riverbed was weak, and the river channel swayed frequently, resulting in fine lithologic particle size, high shale content and complex pore structure of the reservoir, resulting in significant reduction of reservoir resistance. The research conclusion would have strong guiding significance for the development of low resistivity reservoirs in this area.展开更多
The main focus of study is to characterize lower and upper cretaceous carbonate deposits with Low Resistivity Pay, in Persian Gulf. Four oil reservoirs in the Cretaceous including the Zubair, Buwaib, Shuaiba and Khati...The main focus of study is to characterize lower and upper cretaceous carbonate deposits with Low Resistivity Pay, in Persian Gulf. Four oil reservoirs in the Cretaceous including the Zubair, Buwaib, Shuaiba and Khatiyah Formations of Southern fields have been analyzed. Here is a look at that to determine main factors on decreasing resistivity in pay zone. In some intervals resistivity responses reach less than 6 to 1 ohm·m. Significant hydrocarbon accumulations are “hidden” in low resistivity Pay zone, (LRPZ). LRPZ reservoirs have been found in some formations in Persian Gulf. Causes of LRPZ reservoirs on the basis of experimental analysis include clay-coated grains, carbonate with interstitial dispersed clay. On the other side Smectite and Kaolinite of main clays types have high CEC and greater impact on lowering resistivity. Micritization and Pyritization of digenetic process have noticeable impact on LRPZ. It is mentioned that Lønøy method applied to address pore throat sizes which contain Inter crystalline porosity, Chalky Limestone, Mudstone micro porosity. Pore systems are classified at class 2 and 3 Lucia and pore size varies from 0.5 to 4 micron. NMR Core and Log results show different pore size distribution. NMR core and MRIL results explain that decreasing of resistivity in pay zone is related to texture and grain size variation not being existence of moved water. Irreducible water estimate for this reservoir was between 30% and 50%. T2 cut off estimates, for defining irreducible water saturation, 115 ms.展开更多
By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been...By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been studied. The experimental results show that, with the increase of the Dy content, the system undergoes a transition from long range ferromagnetic order to the cluster-spin glass state and further to antiferromagnetic order. For the samples with x=0.20 and 0.30, their magnetic behaviors are abnormal at low temperature, and their resistivities at low temperature have a minimum value. These peculiar phenomena not only come from the lattice effect induced by doping, but also from extra magnetic coupling induced by doping.展开更多
The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeabilit...The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member of the Shahejie Formation in the Dongying Sag has been investigated by detailed core descriptions, thin section analyses, fluid inclusion analyses, carbon and oxygen isotope analyses, mercury injection, porosity and permeability testing, and basin modeling. The cutoff values for the permeability of the reservoirs in the accumulation period were calculated after detailing the accumulation dynamics and reservoir pore structures, then the distribution pattern of the oil-bearing potential of reservoirs controlled by the matching relationship between dynamics and permeability during the accumulation period were summarized. On the basis of the observed diagenetic features and with regard to the paragenetic sequences, the reservoirs can be subdivided into four types of diagenetic facies. The reservoirs experienced two periods of hydro- carbon accumulation. In the early accumulation period, the reservoirs except for diagenetic facies A had middle to high permeability ranging from 10 × 10-3 gm2 to 4207 × 10-3 lain2. In the later accumulation period, the reservoirs except for diagenetic facies C had low permeability ranging from 0.015 × 10-3 gm2 to 62× 10-3 -3m2. In the early accumulation period, the fluid pressure increased by the hydrocarbon generation was 1.4-11.3 MPa with an average value of 5.1 MPa, and a surplus pressure of 1.8-12.6 MPa with an average value of 6.3 MPa. In the later accumulation period, the fluid pressure increased by the hydrocarbon generation process was 0.7-12.7 MPa with an average value of 5.36 MPa and a surplus pressure of 1.3-16.2 MPa with an average value of 6.5 MPa. Even though different types of reservoirs exist, all can form hydrocarbon accumulations in the early accumulation per- iod. Such types of reservoirs can form hydrocarbon accumulation with high accumulation dynamics; however, reservoirs with diagenetic facies A and diagenetic facies B do not develop accumulation conditions with low accumu- lation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock, Also at these depths, lenticular sand bodies can accumulate hydrocarbons. At shallower depths, only the reservoirs with oil-source fault development can accumulate hydrocarbons. For flat surfaces, hydrocarbons have always been accumulated in the reservoirs around the oil-source faults and areas near the center of subsags with high accumulation dynamics.展开更多
Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploi...Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.展开更多
Low gas-saturation reservoirs are gas bearing intervals whose gas saturation is less than 47%. They are common in the Quaternary of the Sanhu area in the Qaidam Basin.Due to the complex genesis mechanisms and special ...Low gas-saturation reservoirs are gas bearing intervals whose gas saturation is less than 47%. They are common in the Quaternary of the Sanhu area in the Qaidam Basin.Due to the complex genesis mechanisms and special geological characteristics,the logging curves of low gas-saturation reservoirs are characterized by ambiguity and diversity,namely without significant log response characteristics. Therefore,it is particularly difficult to identify the low gas-saturation reservoirs in the study area.In addition,the traditional methods such as using the relations among lithology,electrical property,physical property and gas bearing property,as well as their threshold values,can not effectively identify low gas-saturation reservoirs.To solve this problem,we adopt the decision tree,support vector machine and rough set methods to establish a predictive model of low gas-saturation reservoirs,which is capable of classifying a mass of multi-dimensional and fuzzy data.According to the transparency of learning processes and the understandability of learning results,the predictive model was also revised by absorbing the actual reservoir characteristics.Practical applications indicate that the predictive model is effective in identifying low gas-saturation reservoirs in the study area.展开更多
The development theories of low-permeability oil and gas reservoirs are refined, the key development technologies are summarized, and the prospect and technical direction of sustainable development are discussed based...The development theories of low-permeability oil and gas reservoirs are refined, the key development technologies are summarized, and the prospect and technical direction of sustainable development are discussed based on the understanding and research on developed low-permeability oil and gas resources in China. The main achievements include:(1) the theories of low-permeability reservoir seepage, dual-medium seepage, relative homogeneity, etc.(2) the well location optimization technology combining favorable area of reservoir with gas-bearing prediction and combining pre-stack with post-stack;(3) oriented perforating multi-fracture, multistage sand adding, multistage temporary plugging, vertical well multilayer, horizontal and other fracturing techniques to improve productivity of single well;(4) the technology of increasing injection and keeping pressure, such as overall decreasing pressure, local pressurization, shaped charge stamping and plugging removal, fine separate injection, mild advanced water injection and so on;(5) enhanced recovery technology of optimization of injection-production well network in horizontal wells. To continue to develop low-permeability reserves economically and effectively, there are three aspects of work to be done well:(1) depending on technical improvement, continue to innovate new technologies and methods, establish a new mode of low quality reservoir development economically, determine the main technical boundaries and form replacement technology reserves of advanced development;(2) adhering to the management system of low cost technology & low cost, set up a complete set of low-cost dual integration innovation system through continuous innovation in technology and management;(3) striving for national preferential policies.展开更多
In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controll...In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controlling this low permeability reservoir.By doing so,we have made clear that the spatial distribution of reservoir attribute parameters is controlled by the spatial distribution of various kinds of sandstone bodies.By taking advantage of many coring wells and high quality logging data,we used regression analysis for a single well with geological conditions as constraints,to build the interpretation model for logging data and to calculate attribute parameters for a single well,which ensured accuracy of the 1-D vertical model.On this basis,we built a litho-facies model to replace the sedimentary facies model.In addition,we also built a porosity model by using a sequential Gaussian simulation with the lithofacies model as the constraint.In the end,we built a permeability model by using Markov-Bayes simula-tion,with the porosity attribute as the covariate.The results show that the permeability model reflects very well the relative differences between low permeability values,which is of great importance for locating high permeability zones and forecasting zones favorable for exploration and exploitation.展开更多
In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized...In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized,including a quaternary ammonium surfactant and a betaine amphoteric surfactant.The composite surfactant system BYJ-1 was formed by mixing two kinds of surfactants.The minimum interfacial tension between BYJ-1 solution and the crude oil could reach 1.4×10^(-3) mN/m.The temperature resistance was up to 140℃,and the salt resistance could reach up to 120 g/L.For the low permeability core fully saturated with water phase,BYJ-1 could obviously reduce the starting pressure gradient of low permeability core.While for the core with residual oil,BYJ-1 could obviously reduce the injection pressure and improve the oil recovery.Moreover,the field test showed that BYJ-1 could effectively reduce the injection pressure of the water injection well,increase the injection volume,and increase the liquid production and oil production of the corresponding production well.展开更多
To solve the problem that it is difficult to identify carbonate low resistivity pays(LRPs) by conventional logging methods in the Rub Al Khali Basin, the Middle East, the variation of fluid distribution and rock condu...To solve the problem that it is difficult to identify carbonate low resistivity pays(LRPs) by conventional logging methods in the Rub Al Khali Basin, the Middle East, the variation of fluid distribution and rock conductivity during displacement were analyzed by displacement resistivity experiments simulating the process of reservoir formation and production, together with the data from thin sections, mercury injection and nuclear magnetic resonance experiments. In combination with geological understandings, the genetic mechanisms of LRPs were revealed, then the saturation interpretation model was selected, the variation laws and distribution range of the model parameters were defined, and finally an updated comprehensive saturation interpretation technique for the LRPs has been proposed. In the study area, the LRPs have resistivity values of less than 1 Ω·m, similar to or even slightly lower than that of the water layers. Geological research reveals that the LRPs were developed in low-energy depositional environment and their reservoir spaces are controlled by micro-scale pore throats, with an average radius of less than 0.7 μm, so they are typical microporous LRPs. Different from LRPs of sandstone and mudstone, they have less tortuous conductive paths than conventional reservoirs, and thus lower resistivity value under the same saturation. Archie’s formula is applicable to the saturation interpretation of LRPs with a cementation index value of 1.77-1.93 and a saturation index value of 1.82-2.03 that are 0.2-0.4 lower than conventional reservoirs respectively. By using interpretation parameters determined by classification statistics of petrophysical groups(PGs), oil saturations of the LRPs were calculated at bout 30%-50%,15% higher than the results by conventional methods, and basically consistent with the data of Dean Stark, RST, oil testing and production. The 15 wells of oil testing and production proved that the coincidence rate of saturation interpretation is over 90%and the feasibility of this method has been further verified.展开更多
The differences of rock mechanical properties were analyzed based on triaxial compression test in low permeability reservoirs of the Bonan Oilfield. Through the analysis of reservoir mechanics, the influence mechanism...The differences of rock mechanical properties were analyzed based on triaxial compression test in low permeability reservoirs of the Bonan Oilfield. Through the analysis of reservoir mechanics, the influence mechanisms of different mechanical properties of rocks on reservoir in-situ stress were studied. By means of stress ellipse and finite element simulation, the influence rules of different mechanical properties of rocks on in-situ stress field were discussed. For the low permeability reservoirs of the Bonan Oilfield, the coarser rock has a larger Young’s modulus value and a lower Poisson’s ratio. The rock mechanical parameters and stress-strain relationship of sandstone facies and mudstone facies are different. Different rocks have different mechanical properties, which cause extra stress at the lithological contact interface, and the existence of extra stress affects the reservoir in-situ stress. Without considering the influence of structural features on the in-situ stress field, the reservoir in-situ stress is controlled by the magnitude of extra stress and the angle between lithological contact surface and boundary stress.展开更多
基金financially supported by National Natural Science Foundation of China(No.22302229)Beijing Municipal Excellent Talent Training Funds Youth Advanced Individual Project(No.2018000020124G163)。
文摘Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.
基金This work has been Sponsored by CNPC Innovation Found(Grant No.2021DQ02-0202)Besides,the authors gratefully appreciate the financial support of the Science Foundation of China University of Petroleum,Beijing(Grant No.2462020XKBH013)Financial supports from the National Natural Science Foundation of China(Grant No.52174046)is also significantly acknowledged.
文摘Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and high-salinity low permeability reservoirs.Consequently,a novel conformance control system HPF-Co gel,based on high-temperature stabilizer(CoCl_(2)·H_(2)O,CCH)is developed.The HPF-Co bulk gel has better performances with high temperature(120℃)and high salinity(1×10^(5)mg/L).According to Sydansk coding system,the gel strength of HPF-Co with CCH is increased to code G.The dehydration rate of HPF-Co gel is 32.0%after aging for 150 d at 120℃,showing excellent thermal stability.The rheological properties of HPF gel and HPF-Co gel are also studied.The results show that the storage modulus(G′)of HPF-Co gel is always greater than that of HPF gel.The effect of CCH on the microstructure of the gel is studied.The results show that the HPF-Co gel with CCH has a denser gel network,and the diameter of the three-dimensional network skeleton is 1.5-3.5μm.After 90 d of aging,HPF-Co gel still has a good three-dimensional structure.Infrared spectroscopy results show that CCH forms coordination bonds with N and O atoms in the gel amide group,which can suppress the vibration of cross-linked sites and improve the stability at high temperature.Fractured core plugging test determines the optimized polymer gel injection strategy and injection velocity with HPF-Co bulk gel system,plugging rate exceeding 98%.Moreover,the results of subsequent waterflooding recovery can be improved by 17%.
基金funded by the National Natural Science Foundation of China (42174131)。
文摘The resistivity difference between oil and gas layers and the water layers in low contrast tight sandstone reservoirs is subtle. Fluid identification and saturation calculation based on conventional logging methods are facing challenges in such reservoirs. In this paper, a new method is proposed for fluid identification and saturation calculation in low contrast tight sandstone reservoirs. First, a model for calculating apparent formation water resistivity is constructed, which takes into account the influence of shale on the resistivity calculation and avoids apparent formation water resistivity abnormal values.Based on the distribution of the apparent formation water resistivity obtained by the new model, the water spectrum is determined for fluid identification in low contrast tight sandstone reservoirs.Following this, according to the average, standard deviation, and endpoints of the water spectrum, a new four-parameter model for calculating reservoir oil and gas saturation is built. The methods proposed in this paper are applied to the low contrast tight sandstone reservoirs in the Q4 formation of the X53 block and X70 block in the south of Songliao Basin, China. The results show that the water spectrum method can effectively distinguish oil-water layers and water layers in the study area. The standard deviation of the water spectrum in the oil-water layer is generally greater than that in the water layer. The new four-parameter model yields more accurate oil and gas saturation. These findings verify the effectiveness of the proposed methods.
基金Supported by the Natural Science Foundation of Shaanxi Province,China(2010JM5003)
文摘The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers.
基金supported by the Fund of State Key Laboratory of Deep Oil and Gas,China University of Petroleum (East China) (SKLDOG2024-ZYRC-06)Key Program of National Natural Science Foundation of China (52130401)+2 种基金National Natural Science Foundation of China (52104055,52250410349)Major Science and Technology Project of China National Petroleum Corporation Limited (2021ZZ01-08)Shandong Provincial Natural Science Foundation,China (ZR2021ME171)。
文摘CO_(2) flooding is a vital development method for enhanced oil recovery in low-permeability reservoirs,However,micro-fractures are developed in low-permeability reservoirs,which are essential oil flow channels but can also cause severe CO_(2) gas channeling problems.Therefore,anti-gas channeling is a necessary measure to improve the effect of CO_(2) flooding.The kind of anti-gas channeling refers to the plugging of fractures in the deep formation to prevent CO_(2) gas channeling,which is different from the wellbore leakage.Polymer microspheres have the characteristics of controllable deep plugging,which can achieve the profile control of low-permeability fractured reservoirs.In acidic environments with supercritical CO_(2),traditional polymer microspheres have poor expandability and plugging properties.Based on previous work,a systematic evaluation of the expansion performance,dispersion rheological properties,stability,deep migration,anti-CO_(2) channeling and enhanced oil recovery ability of a novel acid-resistant polymer microsphere(DCNPM-A)was carried out under CQ oilifield conditions(salinity of85,000 mg/L,80℃,pH=3).The results show that the DCNPM-A microsphere had a better expansion performance than the traditional microsphere,with a swelling rate of 13.5.The microsphere dispersion with a concentration of 0.1%-0.5%had the advantages of low viscosity,high dispersion and good injectability in the low permeability fractured core.In the acidic environment of supercritical CO_(2),DCNPM-A microspheres showed excellent stability and could maintain strength for over 60 d with less loss.In core experiments,DCNPM-A microspheres exhibited delayed swelling characteristics and could effectively plug deep formations.With a plugging rate of 95%,the subsequent enhanced oil recovery of CO_(2) flooding could reach 21.03%.The experimental results can provide a theoretical basis for anti-CO_(2)channeling and enhanced oil recovery in low-permeability fractured reservoirs.
基金funded by National Natural Science Foundation of China (grant number 42207083)the project of SINOREC (No.322052)
文摘In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d.
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
文摘Low-salinity flooding has been extensively investigated. However, the effects of several variables, such as mineralogical composition, have been neglected. In this regard, the main objective here was to optimize low-salinity water flooding of reservoirs with a wide range of rock mineralogy. Five different brines were determined in reservoirs with different mineral compositions. The mineral composition consisted of limestone and dolomite and the mineralogy varied between 0 and 100% limestone content. The results indicated that the optimum mineralogical system consists of 50% limestone and 50% dolomite flooded with 100% diluted formation brine. Additionally, reservoir mineral composition plays a significant role in the performance of low-salinity water flooding. The findings here will improve our understanding of rock composition effects on the performance of low-salinity water flooding and provide the industry with data that can scientifically improve process optimization.
文摘Carbonate reservoir characterization and estimation of fluid saturation seem more challenging in the low resistivity pay zone (LRPZ). The Lower Cretaceous Buwaib Formation is important reservoir in the Persian Gulf. The formation in the Salman Field is divided into three reservoir zones and four barriers and tight zones. These reservoir zones show low resistivity characteristics, high fluid saturation, but good oil production. In some intervals resistivity responses reach less than 1 ohm•m. Petrophysical properties measured from laboratory and logging tools have been combined with thin section X-ray diffraction (XRD) and PNN (Pulse Neutron Neutron). Geological studies define presence of 8 facies from wackeston to packstone. In general, reservoir potential of the Buwaib Formation is under influenced by the development of lithocodium mound facies that along with moderate to high porosity intervals. Micritization and pyritization of digenetic process along with clay-coated grains, carbonate with interstitial dispersed clay have conspicuous impact on LRPZ. Based on XRD analysis, Montmorillonite and Kaolinite of main clays types have high CEC and greater impact on lowering resistivity. To describe pore systems of rocks, the Lønøy method applied to address pore throat sizes which contain mudstone micro porosity related to lithocodium mound facies and uniform interparticle at class 3 Lucia as pore size varies from 0.2 to 10 micron. Some constraints were defined to estimate reliable water saturation that checked by sigma logs. Water saturation is 42%, 34% and 40% respectively in BL1, BL2 and BL3 zones.
文摘In order to study the micro genetic mechanism and main geological controlling factors of low resistivity reservoir in NgIII formation of X oilfield in Bohai sea in China, the clay mineral composition, irreducible water saturation, salinity and conductive minerals of low resistivity reservoir were studied by using the data of core, cast thin section and analysis, and compared with normal resistivity reservoir. At the same time, the control effect of sedimentary environment on low resistivity reservoir was discussed. The results show that the additional conductivity of high bound water content and high montmorillonite content in the reservoir together leads to the significant reduction of reservoir resistivity, which is the main microscopic cause of the formation of low resistance, and is mainly controlled by the sedimentary background such as paleoclimate and sedimentary cycle. During the deposition period of NgIII formation, the paleoclimate was dry and cold, and it was at the end of the water advance of the medium-term sedimentary cycle. The hydrodynamic force of the river channel was weak, the carrying capacity of the riverbed was weak, and the river channel swayed frequently, resulting in fine lithologic particle size, high shale content and complex pore structure of the reservoir, resulting in significant reduction of reservoir resistance. The research conclusion would have strong guiding significance for the development of low resistivity reservoirs in this area.
文摘The main focus of study is to characterize lower and upper cretaceous carbonate deposits with Low Resistivity Pay, in Persian Gulf. Four oil reservoirs in the Cretaceous including the Zubair, Buwaib, Shuaiba and Khatiyah Formations of Southern fields have been analyzed. Here is a look at that to determine main factors on decreasing resistivity in pay zone. In some intervals resistivity responses reach less than 6 to 1 ohm·m. Significant hydrocarbon accumulations are “hidden” in low resistivity Pay zone, (LRPZ). LRPZ reservoirs have been found in some formations in Persian Gulf. Causes of LRPZ reservoirs on the basis of experimental analysis include clay-coated grains, carbonate with interstitial dispersed clay. On the other side Smectite and Kaolinite of main clays types have high CEC and greater impact on lowering resistivity. Micritization and Pyritization of digenetic process have noticeable impact on LRPZ. It is mentioned that Lønøy method applied to address pore throat sizes which contain Inter crystalline porosity, Chalky Limestone, Mudstone micro porosity. Pore systems are classified at class 2 and 3 Lucia and pore size varies from 0.5 to 4 micron. NMR Core and Log results show different pore size distribution. NMR core and MRIL results explain that decreasing of resistivity in pay zone is related to texture and grain size variation not being existence of moved water. Irreducible water estimate for this reservoir was between 30% and 50%. T2 cut off estimates, for defining irreducible water saturation, 115 ms.
基金This work was supported by the National Nature Science Foundation of China (No. 19934003) the State Key Project of Fundamental Research of China (No.001CB610604) the Item of Nature Science Research of Anhui (No. 2001kj244).
文摘By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been studied. The experimental results show that, with the increase of the Dy content, the system undergoes a transition from long range ferromagnetic order to the cluster-spin glass state and further to antiferromagnetic order. For the samples with x=0.20 and 0.30, their magnetic behaviors are abnormal at low temperature, and their resistivities at low temperature have a minimum value. These peculiar phenomena not only come from the lattice effect induced by doping, but also from extra magnetic coupling induced by doping.
基金supported by the National Natural Science Foundation of China(Grant No.U1262203)the National Science and Technology Special Grant(No.2011ZX05006-003)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.14CX06070A)the Chinese Scholarship Council(No.201506450029)
文摘The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member of the Shahejie Formation in the Dongying Sag has been investigated by detailed core descriptions, thin section analyses, fluid inclusion analyses, carbon and oxygen isotope analyses, mercury injection, porosity and permeability testing, and basin modeling. The cutoff values for the permeability of the reservoirs in the accumulation period were calculated after detailing the accumulation dynamics and reservoir pore structures, then the distribution pattern of the oil-bearing potential of reservoirs controlled by the matching relationship between dynamics and permeability during the accumulation period were summarized. On the basis of the observed diagenetic features and with regard to the paragenetic sequences, the reservoirs can be subdivided into four types of diagenetic facies. The reservoirs experienced two periods of hydro- carbon accumulation. In the early accumulation period, the reservoirs except for diagenetic facies A had middle to high permeability ranging from 10 × 10-3 gm2 to 4207 × 10-3 lain2. In the later accumulation period, the reservoirs except for diagenetic facies C had low permeability ranging from 0.015 × 10-3 gm2 to 62× 10-3 -3m2. In the early accumulation period, the fluid pressure increased by the hydrocarbon generation was 1.4-11.3 MPa with an average value of 5.1 MPa, and a surplus pressure of 1.8-12.6 MPa with an average value of 6.3 MPa. In the later accumulation period, the fluid pressure increased by the hydrocarbon generation process was 0.7-12.7 MPa with an average value of 5.36 MPa and a surplus pressure of 1.3-16.2 MPa with an average value of 6.5 MPa. Even though different types of reservoirs exist, all can form hydrocarbon accumulations in the early accumulation per- iod. Such types of reservoirs can form hydrocarbon accumulation with high accumulation dynamics; however, reservoirs with diagenetic facies A and diagenetic facies B do not develop accumulation conditions with low accumu- lation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock, Also at these depths, lenticular sand bodies can accumulate hydrocarbons. At shallower depths, only the reservoirs with oil-source fault development can accumulate hydrocarbons. For flat surfaces, hydrocarbons have always been accumulated in the reservoirs around the oil-source faults and areas near the center of subsags with high accumulation dynamics.
基金supported by Key Program of National Natural Science Foundation of China (No. 52130401)National Natural Science Foundation of China (No. 52104055)+1 种基金China National Postdoctoral Program for Innovative Talents (No. BX20200386)China Postdoctoral Science Foundation (No. 2021M703586)。
文摘Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed.
基金supported by the National High Technology Research and Development Program(863 Program 2009AA062802)
文摘Low gas-saturation reservoirs are gas bearing intervals whose gas saturation is less than 47%. They are common in the Quaternary of the Sanhu area in the Qaidam Basin.Due to the complex genesis mechanisms and special geological characteristics,the logging curves of low gas-saturation reservoirs are characterized by ambiguity and diversity,namely without significant log response characteristics. Therefore,it is particularly difficult to identify the low gas-saturation reservoirs in the study area.In addition,the traditional methods such as using the relations among lithology,electrical property,physical property and gas bearing property,as well as their threshold values,can not effectively identify low gas-saturation reservoirs.To solve this problem,we adopt the decision tree,support vector machine and rough set methods to establish a predictive model of low gas-saturation reservoirs,which is capable of classifying a mass of multi-dimensional and fuzzy data.According to the transparency of learning processes and the understandability of learning results,the predictive model was also revised by absorbing the actual reservoir characteristics.Practical applications indicate that the predictive model is effective in identifying low gas-saturation reservoirs in the study area.
文摘The development theories of low-permeability oil and gas reservoirs are refined, the key development technologies are summarized, and the prospect and technical direction of sustainable development are discussed based on the understanding and research on developed low-permeability oil and gas resources in China. The main achievements include:(1) the theories of low-permeability reservoir seepage, dual-medium seepage, relative homogeneity, etc.(2) the well location optimization technology combining favorable area of reservoir with gas-bearing prediction and combining pre-stack with post-stack;(3) oriented perforating multi-fracture, multistage sand adding, multistage temporary plugging, vertical well multilayer, horizontal and other fracturing techniques to improve productivity of single well;(4) the technology of increasing injection and keeping pressure, such as overall decreasing pressure, local pressurization, shaped charge stamping and plugging removal, fine separate injection, mild advanced water injection and so on;(5) enhanced recovery technology of optimization of injection-production well network in horizontal wells. To continue to develop low-permeability reserves economically and effectively, there are three aspects of work to be done well:(1) depending on technical improvement, continue to innovate new technologies and methods, establish a new mode of low quality reservoir development economically, determine the main technical boundaries and form replacement technology reserves of advanced development;(2) adhering to the management system of low cost technology & low cost, set up a complete set of low-cost dual integration innovation system through continuous innovation in technology and management;(3) striving for national preferential policies.
基金Project 50374048 supported by the National Natural Science Foundation of China
文摘In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controlling this low permeability reservoir.By doing so,we have made clear that the spatial distribution of reservoir attribute parameters is controlled by the spatial distribution of various kinds of sandstone bodies.By taking advantage of many coring wells and high quality logging data,we used regression analysis for a single well with geological conditions as constraints,to build the interpretation model for logging data and to calculate attribute parameters for a single well,which ensured accuracy of the 1-D vertical model.On this basis,we built a litho-facies model to replace the sedimentary facies model.In addition,we also built a porosity model by using a sequential Gaussian simulation with the lithofacies model as the constraint.In the end,we built a permeability model by using Markov-Bayes simula-tion,with the porosity attribute as the covariate.The results show that the permeability model reflects very well the relative differences between low permeability values,which is of great importance for locating high permeability zones and forecasting zones favorable for exploration and exploitation.
文摘In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized,including a quaternary ammonium surfactant and a betaine amphoteric surfactant.The composite surfactant system BYJ-1 was formed by mixing two kinds of surfactants.The minimum interfacial tension between BYJ-1 solution and the crude oil could reach 1.4×10^(-3) mN/m.The temperature resistance was up to 140℃,and the salt resistance could reach up to 120 g/L.For the low permeability core fully saturated with water phase,BYJ-1 could obviously reduce the starting pressure gradient of low permeability core.While for the core with residual oil,BYJ-1 could obviously reduce the injection pressure and improve the oil recovery.Moreover,the field test showed that BYJ-1 could effectively reduce the injection pressure of the water injection well,increase the injection volume,and increase the liquid production and oil production of the corresponding production well.
基金Supported by the CNPC Scientific Research and Technology Development Project (2019D-4410)。
文摘To solve the problem that it is difficult to identify carbonate low resistivity pays(LRPs) by conventional logging methods in the Rub Al Khali Basin, the Middle East, the variation of fluid distribution and rock conductivity during displacement were analyzed by displacement resistivity experiments simulating the process of reservoir formation and production, together with the data from thin sections, mercury injection and nuclear magnetic resonance experiments. In combination with geological understandings, the genetic mechanisms of LRPs were revealed, then the saturation interpretation model was selected, the variation laws and distribution range of the model parameters were defined, and finally an updated comprehensive saturation interpretation technique for the LRPs has been proposed. In the study area, the LRPs have resistivity values of less than 1 Ω·m, similar to or even slightly lower than that of the water layers. Geological research reveals that the LRPs were developed in low-energy depositional environment and their reservoir spaces are controlled by micro-scale pore throats, with an average radius of less than 0.7 μm, so they are typical microporous LRPs. Different from LRPs of sandstone and mudstone, they have less tortuous conductive paths than conventional reservoirs, and thus lower resistivity value under the same saturation. Archie’s formula is applicable to the saturation interpretation of LRPs with a cementation index value of 1.77-1.93 and a saturation index value of 1.82-2.03 that are 0.2-0.4 lower than conventional reservoirs respectively. By using interpretation parameters determined by classification statistics of petrophysical groups(PGs), oil saturations of the LRPs were calculated at bout 30%-50%,15% higher than the results by conventional methods, and basically consistent with the data of Dean Stark, RST, oil testing and production. The 15 wells of oil testing and production proved that the coincidence rate of saturation interpretation is over 90%and the feasibility of this method has been further verified.
基金Supported by the China National Major Demonstration Project(2017ZX05072)
文摘The differences of rock mechanical properties were analyzed based on triaxial compression test in low permeability reservoirs of the Bonan Oilfield. Through the analysis of reservoir mechanics, the influence mechanisms of different mechanical properties of rocks on reservoir in-situ stress were studied. By means of stress ellipse and finite element simulation, the influence rules of different mechanical properties of rocks on in-situ stress field were discussed. For the low permeability reservoirs of the Bonan Oilfield, the coarser rock has a larger Young’s modulus value and a lower Poisson’s ratio. The rock mechanical parameters and stress-strain relationship of sandstone facies and mudstone facies are different. Different rocks have different mechanical properties, which cause extra stress at the lithological contact interface, and the existence of extra stress affects the reservoir in-situ stress. Without considering the influence of structural features on the in-situ stress field, the reservoir in-situ stress is controlled by the magnitude of extra stress and the angle between lithological contact surface and boundary stress.