The geometric structures, electronic properties, total and binding energies, harmonic frequencies, the highest occupied molecular orbital to the lowest unoccupied molecular orbital energy gaps, and the vertical ioniza...The geometric structures, electronic properties, total and binding energies, harmonic frequencies, the highest occupied molecular orbital to the lowest unoccupied molecular orbital energy gaps, and the vertical ionization potential energies of small LimBn (m+ n = 12) clusters were investigated by the density functional theory B3LYP with a 6-31 I+G (2d, 2p) basis set. All the calculations were performed using the Gaussian09 program. For the study of the LimBn clusters, the global minimum of the B 12 cluster was chosen as the starting point and the boron atoms were gradually replaced by Li atoms. The results showed that as the number of Li atoms increased, the stability of the LimBn cluster decreased and the physical and chemical properties became more active. In addition, on average there was a large charge transfer from the Li atoms to the B atoms.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11264020 and 11364023)the Science Foundation of Education Committee of Jiangxi Province,China(Grant Nos.GJJ12463,11530,and 11540)+1 种基金the Doctoral Startup Fund of Jingguangshang University,China(Grant No.JZB11003)the Key Subject of Atomic and Molecular Physics in Jiangxi Province,China(Grant No.2011-2015)
文摘The geometric structures, electronic properties, total and binding energies, harmonic frequencies, the highest occupied molecular orbital to the lowest unoccupied molecular orbital energy gaps, and the vertical ionization potential energies of small LimBn (m+ n = 12) clusters were investigated by the density functional theory B3LYP with a 6-31 I+G (2d, 2p) basis set. All the calculations were performed using the Gaussian09 program. For the study of the LimBn clusters, the global minimum of the B 12 cluster was chosen as the starting point and the boron atoms were gradually replaced by Li atoms. The results showed that as the number of Li atoms increased, the stability of the LimBn cluster decreased and the physical and chemical properties became more active. In addition, on average there was a large charge transfer from the Li atoms to the B atoms.