In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have differ...In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.展开更多
Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti...Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.展开更多
Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unman...Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection.展开更多
Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of ...Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of such trackers heavily relies on ViT models pretrained for long periods,limitingmore flexible model designs for tracking tasks.To address this issue,we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders,called TrackMAE.During pretraining,we employ two shared-parameter ViTs,serving as the appearance encoder and motion encoder,respectively.The appearance encoder encodes randomly masked image data,while the motion encoder encodes randomly masked pairs of video frames.Subsequently,an appearance decoder and a motion decoder separately reconstruct the original image data and video frame data at the pixel level.In this way,ViT learns to understand both the appearance of images and the motion between video frames simultaneously.Experimental results demonstrate that ViT-Base and ViT-Large models,pretrained with TrackMAE and combined with a simple tracking head,achieve state-of-the-art(SOTA)performance without additional design.Moreover,compared to the currently popular MAE pretraining methods,TrackMAE consumes only 1/5 of the training time,which will facilitate the customization of diverse models for tracking.For instance,we additionally customize a lightweight ViT-XS,which achieves SOTA efficient tracking performance.展开更多
Arbitrary‐oriented object detection is widely used in aerial image applications because of its efficient object representation.However,the use of oriented bounding box aggravates the imbalance between positive and ne...Arbitrary‐oriented object detection is widely used in aerial image applications because of its efficient object representation.However,the use of oriented bounding box aggravates the imbalance between positive and negative samples when using one‐stage object detectors,which seriously decreases the detection accuracy.We believe that it is the anchor learning strategy(ALS)used by such detectors that needs to take the responsibility.In this study,three perspectives on ALS design were summarised and ALS—Performance Releaser with Smart Anchor Learning(PRSAL)was proposed.Performance Releaser with Smart Anchor Learning is a dynamic ALS that utilises anchor classification ability as an equivalent indicator to anchor box regression ability,this allows anchors with high detection potential to be filtered out in a more reasonable way.At the same time,PRSAL focuses more on anchor potential and it is able to automatically select a number of positive samples that far exceed that of other methods by activating anchors that previously had a low spatial overlap,thereby releasing the detection performance.We validate the PRSAL using three remote sensing datasets—HRSC2016,DOTA and UCAS‐AOD as well as one scene text dataset—ICDAR 2013.The experimental results show that the proposed method gives substantially better results than existing models.展开更多
Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this stu...Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this study, the authors propose a method to efficiently simulate the kinematic characteristics of railroad vehicles depending on their speed zone. They utilized the function overloading function supported by a programming language and applied the fourth-order Lunge-Kutta method for dynamic simulation. By constructing an object model, the authors calculated vehicle characteristics and TPS and compared them with actual values, verifying that the developed model represents the real-life vehicle characteristics accurately. The study highlights potential improvements in automated driving and energy consumption optimization in the railway industry.展开更多
Advances in machine vision systems have revolutionized applications such as autonomous driving,robotic navigation,and augmented reality.Despite substantial progress,challenges persist,including dynamic backgrounds,occ...Advances in machine vision systems have revolutionized applications such as autonomous driving,robotic navigation,and augmented reality.Despite substantial progress,challenges persist,including dynamic backgrounds,occlusion,and limited labeled data.To address these challenges,we introduce a comprehensive methodology toenhance image classification and object detection accuracy.The proposed approach involves the integration ofmultiple methods in a complementary way.The process commences with the application of Gaussian filters tomitigate the impact of noise interference.These images are then processed for segmentation using Fuzzy C-Meanssegmentation in parallel with saliency mapping techniques to find the most prominent regions.The Binary RobustIndependent Elementary Features(BRIEF)characteristics are then extracted fromdata derived fromsaliency mapsand segmented images.For precise object separation,Oriented FAST and Rotated BRIEF(ORB)algorithms areemployed.Genetic Algorithms(GAs)are used to optimize Random Forest classifier parameters which lead toimproved performance.Our method stands out due to its comprehensive approach,adeptly addressing challengessuch as changing backdrops,occlusion,and limited labeled data concurrently.A significant enhancement hasbeen achieved by integrating Genetic Algorithms(GAs)to precisely optimize parameters.This minor adjustmentnot only boosts the uniqueness of our system but also amplifies its overall efficacy.The proposed methodologyhas demonstrated notable classification accuracies of 90.9%and 89.0%on the challenging Corel-1k and MSRCdatasets,respectively.Furthermore,detection accuracies of 87.2%and 86.6%have been attained.Although ourmethod performed well in both datasets it may face difficulties in real-world data especially where datasets havehighly complex backgrounds.Despite these limitations,GAintegration for parameter optimization shows a notablestrength in enhancing the overall adaptability and performance of our system.展开更多
Confusing object detection(COD),such as glass,mirrors,and camouflaged objects,represents a burgeoning visual detection task centered on pinpointing and distinguishing concealed targets within intricate backgrounds,lev...Confusing object detection(COD),such as glass,mirrors,and camouflaged objects,represents a burgeoning visual detection task centered on pinpointing and distinguishing concealed targets within intricate backgrounds,leveraging deep learning methodologies.Despite garnering increasing attention in computer vision,the focus of most existing works leans toward formulating task-specific solutions rather than delving into in-depth analyses of methodological structures.As of now,there is a notable absence of a comprehensive systematic review that focuses on recently proposed deep learning-based models for these specific tasks.To fill this gap,our study presents a pioneering review that covers both themodels and the publicly available benchmark datasets,while also identifying potential directions for future research in this field.The current dataset primarily focuses on single confusing object detection at the image level,with some studies extending to video-level data.We conduct an in-depth analysis of deep learning architectures,revealing that the current state-of-the-art(SOTA)COD methods demonstrate promising performance in single object detection.We also compile and provide detailed descriptions ofwidely used datasets relevant to these detection tasks.Our endeavor extends to discussing the limitations observed in current methodologies,alongside proposed solutions aimed at enhancing detection accuracy.Additionally,we deliberate on relevant applications and outline future research trajectories,aiming to catalyze advancements in the field of glass,mirror,and camouflaged object detection.展开更多
Discovering floating wastes,especially bottles on water,is a crucial research problem in environmental hygiene.Nevertheless,real-world applications often face challenges such as interference from irrelevant objects an...Discovering floating wastes,especially bottles on water,is a crucial research problem in environmental hygiene.Nevertheless,real-world applications often face challenges such as interference from irrelevant objects and the high cost associated with data collection.Consequently,devising algorithms capable of accurately localizing specific objects within a scene in scenarios where annotated data is limited remains a formidable challenge.To solve this problem,this paper proposes an object discovery by request problem setting and a corresponding algorithmic framework.The proposed problem setting aims to identify specified objects in scenes,and the associated algorithmic framework comprises pseudo data generation and object discovery by request network.Pseudo-data generation generates images resembling natural scenes through various data augmentation rules,using a small number of object samples and scene images.The network structure of object discovery by request utilizes the pre-trained Vision Transformer(ViT)model as the backbone,employs object-centric methods to learn the latent representations of foreground objects,and applies patch-level reconstruction constraints to the model.During the validation phase,we use the generated pseudo datasets as training sets and evaluate the performance of our model on the original test sets.Experiments have proved that our method achieves state-of-the-art performance on Unmanned Aerial Vehicles-Bottle Detection(UAV-BD)dataset and self-constructed dataset Bottle,especially in multi-object scenarios.展开更多
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les...Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.展开更多
Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane a...Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane and out-of-plane orientations remains a grand challenge.In this study,we reported the preparation of three-dimensionally oriented MIL-96 layers through combining morphology control of MIL-96 seeds with addition of polyvinylpyrrolidone surfactants and arachidonic acids.The three-dimensionally oriented MIL-96 film was readily obtained through in-plane epitaxial growth.It is anticipated that the aforementioned protocol can be effective for obtaining diverse MOF films with a three-dimensionally oriented organization.展开更多
Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,w...Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy.展开更多
The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection ...The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection in the field of blasting.Serverless Computing can provide a variety of computing services for people without hardware foundations and rich software development experience,which has aroused people’s interest in how to use it in the field ofmachine learning.In this paper,we design a distributedmachine learning training application based on the AWS Lambda platform.Based on data parallelism,the data aggregation and training synchronization in Function as a Service(FaaS)are effectively realized.It also encrypts the data set,effectively reducing the risk of data leakage.We rent a cloud server and a Lambda,and then we conduct experiments to evaluate our applications.Our results indicate the effectiveness,rapidity,and economy of distributed training on FaaS.展开更多
Visual object tracking plays a crucial role in computer vision.In recent years,researchers have proposed various methods to achieve high-performance object tracking.Among these,methods based on Transformers have becom...Visual object tracking plays a crucial role in computer vision.In recent years,researchers have proposed various methods to achieve high-performance object tracking.Among these,methods based on Transformers have become a research hotspot due to their ability to globally model and contextualize information.However,current Transformer-based object tracking methods still face challenges such as low tracking accuracy and the presence of redundant feature information.In this paper,we introduce self-calibration multi-head self-attention Transformer(SMSTracker)as a solution to these challenges.It employs a hybrid tensor decomposition self-organizing multihead self-attention transformermechanism,which not only compresses and accelerates Transformer operations but also significantly reduces redundant data,thereby enhancing the accuracy and efficiency of tracking.Additionally,we introduce a self-calibration attention fusion block to resolve common issues of attention ambiguities and inconsistencies found in traditional trackingmethods,ensuring the stability and reliability of tracking performance across various scenarios.By integrating a hybrid tensor decomposition approach with a self-organizingmulti-head self-attentive transformer mechanism,SMSTracker enhances the efficiency and accuracy of the tracking process.Experimental results show that SMSTracker achieves competitive performance in visual object tracking,promising more robust and efficient tracking systems,demonstrating its potential to providemore robust and efficient tracking solutions in real-world applications.展开更多
In clinical practice,the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications.Measuring the amount of each type of urine sediment allows for screening,...In clinical practice,the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications.Measuring the amount of each type of urine sediment allows for screening,diagnosis and evaluation of kidney and urinary tract disease,providing insight into the specific type and severity.However,manual urine sediment examination is labor-intensive,time-consuming,and subjective.Traditional machine learning based object detection methods require hand-crafted features for localization and classification,which have poor generalization capabilities and are difficult to quickly and accurately detect the number of urine sediments.Deep learning based object detection methods have the potential to address the challenges mentioned above,but these methods require access to large urine sediment image datasets.Unfortunately,only a limited number of publicly available urine sediment datasets are currently available.To alleviate the lack of urine sediment datasets in medical image analysis,we propose a new dataset named UriSed2K,which contains 2465 high-quality images annotated with expert guidance.Two main challenges are associated with our dataset:a large number of small objects and the occlusion between these small objects.Our manuscript focuses on applying deep learning object detection methods to the urine sediment dataset and addressing the challenges presented by this dataset.Specifically,our goal is to improve the accuracy and efficiency of the detection algorithm and,in doing so,provide medical professionals with an automatic detector that saves time and effort.We propose an improved lightweight one-stage object detection algorithm called Discriminatory-YOLO.The proposed algorithm comprises a local context attention module and a global background suppression module,which aid the detector in distinguishing urine sediment features in the image.The local context attention module captures context information beyond the object region,while the global background suppression module emphasizes objects in uninformative backgrounds.We comprehensively evaluate our method on the UriSed2K dataset,which includes seven categories of urine sediments,such as erythrocytes(red blood cells),leukocytes(white blood cells),epithelial cells,crystals,mycetes,broken erythrocytes,and broken leukocytes,achieving the best average precision(AP)of 95.3%while taking only 10 ms per image.The source code and dataset are available at https://github.com/binghuiwu98/discriminatoryyolov5.展开更多
Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully superv...Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background information.Therefore,an intuitive idea is to infer annotations that cover more complete object and background regions for training.To this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent labels.Specifically,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster centres.Next,the same annotations for pixels with similar colours within each kernel neighbourhood was set further.Extensive experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results.展开更多
Object detection finds wide application in various sectors,including autonomous driving,industry,and healthcare.Recent studies have highlighted the vulnerability of object detection models built using deep neural netw...Object detection finds wide application in various sectors,including autonomous driving,industry,and healthcare.Recent studies have highlighted the vulnerability of object detection models built using deep neural networks when confronted with carefully crafted adversarial examples.This not only reveals their shortcomings in defending against malicious attacks but also raises widespread concerns about the security of existing systems.Most existing adversarial attack strategies focus primarily on image classification problems,failing to fully exploit the unique characteristics of object detectionmodels,thus resulting in widespread deficiencies in their transferability.Furthermore,previous research has predominantly concentrated on the transferability issues of non-targeted attacks,whereas enhancing the transferability of targeted adversarial examples presents even greater challenges.Traditional attack techniques typically employ cross-entropy as a loss measure,iteratively adjusting adversarial examples to match target categories.However,their inherent limitations restrict their broad applicability and transferability across different models.To address the aforementioned challenges,this study proposes a novel targeted adversarial attack method aimed at enhancing the transferability of adversarial samples across object detection models.Within the framework of iterative attacks,we devise a new objective function designed to mitigate consistency issues arising from cumulative noise and to enhance the separation between target and non-target categories(logit margin).Secondly,a data augmentation framework incorporating random erasing and color transformations is introduced into targeted adversarial attacks.This enhances the diversity of gradients,preventing overfitting to white-box models.Lastly,perturbations are applied only within the specified object’s bounding box to reduce the perturbation range,enhancing attack stealthiness.Experiments were conducted on the Microsoft Common Objects in Context(MS COCO)dataset using You Only Look Once version 3(YOLOv3),You Only Look Once version 8(YOLOv8),Faster Region-based Convolutional Neural Networks(Faster R-CNN),and RetinaNet.The results demonstrate a significant advantage of the proposed method in black-box settings.Among these,the success rate of RetinaNet transfer attacks reached a maximum of 82.59%.展开更多
The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional appro...The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities.展开更多
文摘In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.
文摘Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.
基金This research was funded by the Natural Science Foundation of Hebei Province(F2021506004).
文摘Transformer-based models have facilitated significant advances in object detection.However,their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle(UAV)imagery.Addressing these limitations,we propose a hybrid transformer-based detector,H-DETR,and enhance it for dense small objects,leading to an accurate and efficient model.Firstly,we introduce a hybrid transformer encoder,which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently.Furthermore,we propose two novel strategies to enhance detection performance without incurring additional inference computation.Query filter is designed to cope with the dense clustering inherent in drone-captured images by counteracting similar queries with a training-aware non-maximum suppression.Adversarial denoising learning is a novel enhancement method inspired by adversarial learning,which improves the detection of numerous small targets by counteracting the effects of artificial spatial and semantic noise.Extensive experiments on the VisDrone and UAVDT datasets substantiate the effectiveness of our approach,achieving a significant improvement in accuracy with a reduction in computational complexity.Our method achieves 31.9%and 21.1%AP on the VisDrone and UAVDT datasets,respectively,and has a faster inference speed,making it a competitive model in UAV image object detection.
基金supported in part by National Natural Science Foundation of China(No.62176041)in part by Excellent Science and Technique Talent Foundation of Dalian(No.2022RY21).
文摘Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of such trackers heavily relies on ViT models pretrained for long periods,limitingmore flexible model designs for tracking tasks.To address this issue,we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders,called TrackMAE.During pretraining,we employ two shared-parameter ViTs,serving as the appearance encoder and motion encoder,respectively.The appearance encoder encodes randomly masked image data,while the motion encoder encodes randomly masked pairs of video frames.Subsequently,an appearance decoder and a motion decoder separately reconstruct the original image data and video frame data at the pixel level.In this way,ViT learns to understand both the appearance of images and the motion between video frames simultaneously.Experimental results demonstrate that ViT-Base and ViT-Large models,pretrained with TrackMAE and combined with a simple tracking head,achieve state-of-the-art(SOTA)performance without additional design.Moreover,compared to the currently popular MAE pretraining methods,TrackMAE consumes only 1/5 of the training time,which will facilitate the customization of diverse models for tracking.For instance,we additionally customize a lightweight ViT-XS,which achieves SOTA efficient tracking performance.
基金supported by the National Key R&D Program of China(Grant No.2021YFB3900502)the Scientific Research and Development Program of China Railway(K2019G008)the Tianjin Intelligent Manufacturing Special Fund Project(No.20201198).
文摘Arbitrary‐oriented object detection is widely used in aerial image applications because of its efficient object representation.However,the use of oriented bounding box aggravates the imbalance between positive and negative samples when using one‐stage object detectors,which seriously decreases the detection accuracy.We believe that it is the anchor learning strategy(ALS)used by such detectors that needs to take the responsibility.In this study,three perspectives on ALS design were summarised and ALS—Performance Releaser with Smart Anchor Learning(PRSAL)was proposed.Performance Releaser with Smart Anchor Learning is a dynamic ALS that utilises anchor classification ability as an equivalent indicator to anchor box regression ability,this allows anchors with high detection potential to be filtered out in a more reasonable way.At the same time,PRSAL focuses more on anchor potential and it is able to automatically select a number of positive samples that far exceed that of other methods by activating anchors that previously had a low spatial overlap,thereby releasing the detection performance.We validate the PRSAL using three remote sensing datasets—HRSC2016,DOTA and UCAS‐AOD as well as one scene text dataset—ICDAR 2013.The experimental results show that the proposed method gives substantially better results than existing models.
文摘Automated operation and artificial intelligence technology have become essential for ensuring the safety, efficiency, and punctuality of railways, with applications such as ATO (Automatic Train Operation). In this study, the authors propose a method to efficiently simulate the kinematic characteristics of railroad vehicles depending on their speed zone. They utilized the function overloading function supported by a programming language and applied the fourth-order Lunge-Kutta method for dynamic simulation. By constructing an object model, the authors calculated vehicle characteristics and TPS and compared them with actual values, verifying that the developed model represents the real-life vehicle characteristics accurately. The study highlights potential improvements in automated driving and energy consumption optimization in the railway industry.
基金a grant from the Basic Science Research Program through the National Research Foundation(NRF)(2021R1F1A1063634)funded by the Ministry of Science and ICT(MSIT)Republic of Korea.This research is supported and funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2024R410)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding program Grant Code(NU/RG/SERC/12/6).
文摘Advances in machine vision systems have revolutionized applications such as autonomous driving,robotic navigation,and augmented reality.Despite substantial progress,challenges persist,including dynamic backgrounds,occlusion,and limited labeled data.To address these challenges,we introduce a comprehensive methodology toenhance image classification and object detection accuracy.The proposed approach involves the integration ofmultiple methods in a complementary way.The process commences with the application of Gaussian filters tomitigate the impact of noise interference.These images are then processed for segmentation using Fuzzy C-Meanssegmentation in parallel with saliency mapping techniques to find the most prominent regions.The Binary RobustIndependent Elementary Features(BRIEF)characteristics are then extracted fromdata derived fromsaliency mapsand segmented images.For precise object separation,Oriented FAST and Rotated BRIEF(ORB)algorithms areemployed.Genetic Algorithms(GAs)are used to optimize Random Forest classifier parameters which lead toimproved performance.Our method stands out due to its comprehensive approach,adeptly addressing challengessuch as changing backdrops,occlusion,and limited labeled data concurrently.A significant enhancement hasbeen achieved by integrating Genetic Algorithms(GAs)to precisely optimize parameters.This minor adjustmentnot only boosts the uniqueness of our system but also amplifies its overall efficacy.The proposed methodologyhas demonstrated notable classification accuracies of 90.9%and 89.0%on the challenging Corel-1k and MSRCdatasets,respectively.Furthermore,detection accuracies of 87.2%and 86.6%have been attained.Although ourmethod performed well in both datasets it may face difficulties in real-world data especially where datasets havehighly complex backgrounds.Despite these limitations,GAintegration for parameter optimization shows a notablestrength in enhancing the overall adaptability and performance of our system.
基金supported by the NationalNatural Science Foundation of China Nos.62302167,U23A20343Shanghai Sailing Program(23YF1410500)Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission(23CGA34).
文摘Confusing object detection(COD),such as glass,mirrors,and camouflaged objects,represents a burgeoning visual detection task centered on pinpointing and distinguishing concealed targets within intricate backgrounds,leveraging deep learning methodologies.Despite garnering increasing attention in computer vision,the focus of most existing works leans toward formulating task-specific solutions rather than delving into in-depth analyses of methodological structures.As of now,there is a notable absence of a comprehensive systematic review that focuses on recently proposed deep learning-based models for these specific tasks.To fill this gap,our study presents a pioneering review that covers both themodels and the publicly available benchmark datasets,while also identifying potential directions for future research in this field.The current dataset primarily focuses on single confusing object detection at the image level,with some studies extending to video-level data.We conduct an in-depth analysis of deep learning architectures,revealing that the current state-of-the-art(SOTA)COD methods demonstrate promising performance in single object detection.We also compile and provide detailed descriptions ofwidely used datasets relevant to these detection tasks.Our endeavor extends to discussing the limitations observed in current methodologies,alongside proposed solutions aimed at enhancing detection accuracy.Additionally,we deliberate on relevant applications and outline future research trajectories,aiming to catalyze advancements in the field of glass,mirror,and camouflaged object detection.
文摘Discovering floating wastes,especially bottles on water,is a crucial research problem in environmental hygiene.Nevertheless,real-world applications often face challenges such as interference from irrelevant objects and the high cost associated with data collection.Consequently,devising algorithms capable of accurately localizing specific objects within a scene in scenarios where annotated data is limited remains a formidable challenge.To solve this problem,this paper proposes an object discovery by request problem setting and a corresponding algorithmic framework.The proposed problem setting aims to identify specified objects in scenes,and the associated algorithmic framework comprises pseudo data generation and object discovery by request network.Pseudo-data generation generates images resembling natural scenes through various data augmentation rules,using a small number of object samples and scene images.The network structure of object discovery by request utilizes the pre-trained Vision Transformer(ViT)model as the backbone,employs object-centric methods to learn the latent representations of foreground objects,and applies patch-level reconstruction constraints to the model.During the validation phase,we use the generated pseudo datasets as training sets and evaluate the performance of our model on the original test sets.Experiments have proved that our method achieves state-of-the-art performance on Unmanned Aerial Vehicles-Bottle Detection(UAV-BD)dataset and self-constructed dataset Bottle,especially in multi-object scenarios.
文摘Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.
基金National Natural Science Foundation of China(22078039)Science Fund for Creative Research Groups of the National Natural Science Foundation of China(22021005)+1 种基金National Key Research and Development Program of China(2023YFB3810700)the Fundamental Research Funds for the Central Universities(DUT22LAB602)。
文摘Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane and out-of-plane orientations remains a grand challenge.In this study,we reported the preparation of three-dimensionally oriented MIL-96 layers through combining morphology control of MIL-96 seeds with addition of polyvinylpyrrolidone surfactants and arachidonic acids.The three-dimensionally oriented MIL-96 film was readily obtained through in-plane epitaxial growth.It is anticipated that the aforementioned protocol can be effective for obtaining diverse MOF films with a three-dimensionally oriented organization.
基金supported by a grant from the National Key Research and Development Project(2023YFB4302100)Key Research and Development Project of Jiangxi Province(No.20232ACE01011)Independent Deployment Project of Ganjiang Innovation Research Institute,Chinese Academy of Sciences(E255J001).
文摘Aiming at the limitations of the existing railway foreign object detection methods based on two-dimensional(2D)images,such as short detection distance,strong influence of environment and lack of distance information,we propose Rail-PillarNet,a three-dimensional(3D)LIDAR(Light Detection and Ranging)railway foreign object detection method based on the improvement of PointPillars.Firstly,the parallel attention pillar encoder(PAPE)is designed to fully extract the features of the pillars and alleviate the problem of local fine-grained information loss in PointPillars pillars encoder.Secondly,a fine backbone network is designed to improve the feature extraction capability of the network by combining the coding characteristics of LIDAR point cloud feature and residual structure.Finally,the initial weight parameters of the model were optimised by the transfer learning training method to further improve accuracy.The experimental results on the OSDaR23 dataset show that the average accuracy of Rail-PillarNet reaches 58.51%,which is higher than most mainstream models,and the number of parameters is 5.49 M.Compared with PointPillars,the accuracy of each target is improved by 10.94%,3.53%,16.96%and 19.90%,respectively,and the number of parameters only increases by 0.64M,which achieves a balance between the number of parameters and accuracy.
文摘The data analysis of blasting sites has always been the research goal of relevant researchers.The rise of mobile blasting robots has aroused many researchers’interest in machine learning methods for target detection in the field of blasting.Serverless Computing can provide a variety of computing services for people without hardware foundations and rich software development experience,which has aroused people’s interest in how to use it in the field ofmachine learning.In this paper,we design a distributedmachine learning training application based on the AWS Lambda platform.Based on data parallelism,the data aggregation and training synchronization in Function as a Service(FaaS)are effectively realized.It also encrypts the data set,effectively reducing the risk of data leakage.We rent a cloud server and a Lambda,and then we conduct experiments to evaluate our applications.Our results indicate the effectiveness,rapidity,and economy of distributed training on FaaS.
基金supported by the National Natural Science Foundation of China under Grant 62177029the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX21_0740),China.
文摘Visual object tracking plays a crucial role in computer vision.In recent years,researchers have proposed various methods to achieve high-performance object tracking.Among these,methods based on Transformers have become a research hotspot due to their ability to globally model and contextualize information.However,current Transformer-based object tracking methods still face challenges such as low tracking accuracy and the presence of redundant feature information.In this paper,we introduce self-calibration multi-head self-attention Transformer(SMSTracker)as a solution to these challenges.It employs a hybrid tensor decomposition self-organizing multihead self-attention transformermechanism,which not only compresses and accelerates Transformer operations but also significantly reduces redundant data,thereby enhancing the accuracy and efficiency of tracking.Additionally,we introduce a self-calibration attention fusion block to resolve common issues of attention ambiguities and inconsistencies found in traditional trackingmethods,ensuring the stability and reliability of tracking performance across various scenarios.By integrating a hybrid tensor decomposition approach with a self-organizingmulti-head self-attentive transformer mechanism,SMSTracker enhances the efficiency and accuracy of the tracking process.Experimental results show that SMSTracker achieves competitive performance in visual object tracking,promising more robust and efficient tracking systems,demonstrating its potential to providemore robust and efficient tracking solutions in real-world applications.
基金This work was partially supported by the National Natural Science Foundation of China(Grant Nos.61906168,U20A20171)Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LY23F020023,LY21F020027)Construction of Hubei Provincial Key Laboratory for Intelligent Visual Monitoring of Hydropower Projects(Grant Nos.2022SDSJ01).
文摘In clinical practice,the microscopic examination of urine sediment is considered an important in vitro examination with many broad applications.Measuring the amount of each type of urine sediment allows for screening,diagnosis and evaluation of kidney and urinary tract disease,providing insight into the specific type and severity.However,manual urine sediment examination is labor-intensive,time-consuming,and subjective.Traditional machine learning based object detection methods require hand-crafted features for localization and classification,which have poor generalization capabilities and are difficult to quickly and accurately detect the number of urine sediments.Deep learning based object detection methods have the potential to address the challenges mentioned above,but these methods require access to large urine sediment image datasets.Unfortunately,only a limited number of publicly available urine sediment datasets are currently available.To alleviate the lack of urine sediment datasets in medical image analysis,we propose a new dataset named UriSed2K,which contains 2465 high-quality images annotated with expert guidance.Two main challenges are associated with our dataset:a large number of small objects and the occlusion between these small objects.Our manuscript focuses on applying deep learning object detection methods to the urine sediment dataset and addressing the challenges presented by this dataset.Specifically,our goal is to improve the accuracy and efficiency of the detection algorithm and,in doing so,provide medical professionals with an automatic detector that saves time and effort.We propose an improved lightweight one-stage object detection algorithm called Discriminatory-YOLO.The proposed algorithm comprises a local context attention module and a global background suppression module,which aid the detector in distinguishing urine sediment features in the image.The local context attention module captures context information beyond the object region,while the global background suppression module emphasizes objects in uninformative backgrounds.We comprehensively evaluate our method on the UriSed2K dataset,which includes seven categories of urine sediments,such as erythrocytes(red blood cells),leukocytes(white blood cells),epithelial cells,crystals,mycetes,broken erythrocytes,and broken leukocytes,achieving the best average precision(AP)of 95.3%while taking only 10 ms per image.The source code and dataset are available at https://github.com/binghuiwu98/discriminatoryyolov5.
文摘Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background information.Therefore,an intuitive idea is to infer annotations that cover more complete object and background regions for training.To this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent labels.Specifically,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster centres.Next,the same annotations for pixels with similar colours within each kernel neighbourhood was set further.Extensive experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results.
文摘Object detection finds wide application in various sectors,including autonomous driving,industry,and healthcare.Recent studies have highlighted the vulnerability of object detection models built using deep neural networks when confronted with carefully crafted adversarial examples.This not only reveals their shortcomings in defending against malicious attacks but also raises widespread concerns about the security of existing systems.Most existing adversarial attack strategies focus primarily on image classification problems,failing to fully exploit the unique characteristics of object detectionmodels,thus resulting in widespread deficiencies in their transferability.Furthermore,previous research has predominantly concentrated on the transferability issues of non-targeted attacks,whereas enhancing the transferability of targeted adversarial examples presents even greater challenges.Traditional attack techniques typically employ cross-entropy as a loss measure,iteratively adjusting adversarial examples to match target categories.However,their inherent limitations restrict their broad applicability and transferability across different models.To address the aforementioned challenges,this study proposes a novel targeted adversarial attack method aimed at enhancing the transferability of adversarial samples across object detection models.Within the framework of iterative attacks,we devise a new objective function designed to mitigate consistency issues arising from cumulative noise and to enhance the separation between target and non-target categories(logit margin).Secondly,a data augmentation framework incorporating random erasing and color transformations is introduced into targeted adversarial attacks.This enhances the diversity of gradients,preventing overfitting to white-box models.Lastly,perturbations are applied only within the specified object’s bounding box to reduce the perturbation range,enhancing attack stealthiness.Experiments were conducted on the Microsoft Common Objects in Context(MS COCO)dataset using You Only Look Once version 3(YOLOv3),You Only Look Once version 8(YOLOv8),Faster Region-based Convolutional Neural Networks(Faster R-CNN),and RetinaNet.The results demonstrate a significant advantage of the proposed method in black-box settings.Among these,the success rate of RetinaNet transfer attacks reached a maximum of 82.59%.
基金supported by theKorea Industrial Technology Association(KOITA)Grant Funded by the Korean government(MSIT)(No.KOITA-2023-3-003)supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2024-2020-0-01808)Supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)。
文摘The advancement of navigation systems for the visually impaired has significantly enhanced their mobility by mitigating the risk of encountering obstacles and guiding them along safe,navigable routes.Traditional approaches primarily focus on broad applications such as wayfinding,obstacle detection,and fall prevention.However,there is a notable discrepancy in applying these technologies to more specific scenarios,like identifying distinct food crop types or recognizing faces.This study proposes a real-time application designed for visually impaired individuals,aiming to bridge this research-application gap.It introduces a system capable of detecting 20 different food crop types and recognizing faces with impressive accuracies of 83.27%and 95.64%,respectively.These results represent a significant contribution to the field of assistive technologies,providing visually impaired users with detailed and relevant information about their surroundings,thereby enhancing their mobility and ensuring their safety.Additionally,it addresses the vital aspects of social engagements,acknowledging the challenges faced by visually impaired individuals in recognizing acquaintances without auditory or tactile signals,and highlights recent developments in prototype systems aimed at assisting with face recognition tasks.This comprehensive approach not only promises enhanced navigational aids but also aims to enrich the social well-being and safety of visually impaired communities.