期刊文献+
共找到2,910篇文章
< 1 2 146 >
每页显示 20 50 100
Single-atom Pt on carbon nanotubes for selective electrocatalysis 被引量:2
1
作者 Samuel S.Hardisty Xiaoqian Lin +1 位作者 Anthony R.J.Kucernak David Zitoun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期63-71,共9页
Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reactio... Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reaction(HOR).Herein,we describe the synthesis of a Pt single electrocatalyst inside single-walled carbon nanotubes(SWCNTs)via a redox reaction.Characterizations via electron microscopy,X-ray photoelectron microscopy,and X-ray absorption spectroscopy show the single-atom nature of the Pt.The electrochemical behavior of the sample to hydrogen and oxygen was investigated using the advanced floating electrode technique,which minimizes mass transport limitations and gives a thorough insight into the activity of the electrocatalyst.The single-atom samples showed higher HOR activity than state-of-the-art 30%Pt/C while almost no oxygen reduction reaction activity in the proton exchange membrane fuel cell operating range.The selective activity toward HOR arose as the main fingerprint of the catalyst confinement in the SWCNTs. 展开更多
关键词 CONFINEMENT electrocatalysis hydrogen PLATINUM single atom catalysts
下载PDF
Potential industrial applications of photo/electrocatalysis: Recent progress and future challenges 被引量:2
2
作者 Jinhao Li Jing Ren +8 位作者 Shaoquan Li Guangchao Li Molly Meng-Jung Li Rengui Li Young Soo Kang Xiaoxin Zou Yong Luo Bin Liu Yufei Zhao 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期859-876,共18页
Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis... Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view. 展开更多
关键词 PHOTOCATALYSIS electrocatalysis Industrial applications H2 economy
下载PDF
Recent Advances in Mechanistic Understanding of Metal-Free Carbon Thermocatalysis and Electrocatalysis with Model Molecules
3
作者 Wei Guo Linhui Yu +2 位作者 Ling Tang Yan Wan Yangming Lin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期74-97,共24页
Metal-free carbon,as the most representative heterogeneous metal-free catalysts,have received considerable interests in electro-and thermo-catalytic reac-tions due to their impressive performance and sustainability.Ov... Metal-free carbon,as the most representative heterogeneous metal-free catalysts,have received considerable interests in electro-and thermo-catalytic reac-tions due to their impressive performance and sustainability.Over the past decade,well-designed carbon catalysts with tunable structures and heteroatom groups coupled with various characterization techniques have proposed numerous reaction mechanisms.However,active sites,key intermediate species,precise structure-activity relationships and dynamic evolution processes of carbon catalysts are still rife with controversies due to the monotony and limitation of used experimental methods.In this Review,we sum-marize the extensive efforts on model catalysts since the 2000s,particularly in the past decade,to overcome the influences of material and structure limitations in metal-free carbon catalysis.Using both nanomolecule model and bulk model,the real contribution of each alien species,defect and edge configuration to a series of fundamentally important reactions,such as thermocatalytic reactions,electrocatalytic reactions,were systematically studied.Combined with in situ techniques,isotope labeling and size control,the detailed reaction mechanisms,the precise 2D structure-activity relationships and the rate-determining steps were revealed at a molecular level.Furthermore,the outlook of model carbon catalysis has also been proposed in this work. 展开更多
关键词 Metal-free carbon catalysts Model catalyst electrocatalysis Active site Reaction mechanisms
下载PDF
A post-modification strategy to precisely construct dual-atom sites for oxygen reduction electrocatalysis
4
作者 Juan Wang Xinyan Liu +9 位作者 Chang-Xin Zhao Yun-Wei Song Jia-Ning Liu Xi-Yao Li Chen-Xi Bi Xin Wan Jianglan Shui Hong-Jie Peng Bo-Quan Li Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期511-517,I0012,共8页
Dual-atom catalysts(DACs) afford promising potential for oxygen reduction electrocatalysis due to their high atomic efficiency and high intrinsic activity.However,precise construction of dual-atom sites remains a chal... Dual-atom catalysts(DACs) afford promising potential for oxygen reduction electrocatalysis due to their high atomic efficiency and high intrinsic activity.However,precise construction of dual-atom sites remains a challenge.In this work,a post-modification strategy is proposed to precisely fabricate DACs for oxygen reduction electrocatalysis.Concretely,a secondary metal precursor is introduced to the primary single-atom sites to introduce direct metal-metal interaction,which ensures the formation of desired atom pair structure during the subsequent pyrolysis process and allows for successful construction of DACs.The as-prepared FeCo-NC DAC exhibits superior oxygen reduction electrocatalytic activity with a half-wave potential of 0,91 V vs.reversible hydrogen electrode.Zn-air batteries equipped with the FeCo-NC DAC demonstrate higher peak power density than those with the Pt/C benchmark.More importantly,this post-modification strategy is demonstrated universal to achieve a variety of dual-atom sites.This work presents an effective synthesis methodology for precise construction of catalytic materials and propels their applications in energy-related devices. 展开更多
关键词 Dual-atom catalysts electrocatalysis Oxygen reduction reaction Post-modification Zinc–air batteries
下载PDF
Operando NMR methods for studying electrocatalysis
5
作者 Zhiyu Zhu Ruipeng Luo Evan Wenbo Zhao 《Magnetic Resonance Letters》 2024年第2期54-64,共11页
The combination of electrochemical measurements with spectroscopic characterizations provides valuable insights into reaction mechanisms.Nuclear magnetic resonance(NMR)spectroscopy,as a powerful technique due to its a... The combination of electrochemical measurements with spectroscopic characterizations provides valuable insights into reaction mechanisms.Nuclear magnetic resonance(NMR)spectroscopy,as a powerful technique due to its atomic specificity and versatility in studying gas,liquid,and solid,allows the study of electrolyte solution,catalyst and catalyst-adsorbate interfaces.When applied in operando,NMR can offer molecular-level insights into various electrochemical processes.Operando NMR has been applied extensively in battery research,but relatively underexplored for electrocatalysis in the past two decades.In this mini review,we first introduce the operando electrochemical NMR setups,categorized by different probe designs.Then we review the applications of operando NMR for monitoring the electrolyte solution and the catalyst-adsorbate interface.Considering the high environmental impact of electrochemical conversion of CO_(2)into value-added products,we zoom in to the use of operando NMR in studying electrochemical CO_(2)reduction.Finally,we provide our perspective on further developing and applying operando NMR methods for understanding the complex reaction network of Cu-catalyzed electrochemical CO_(2)reduction. 展开更多
关键词 Operando NMR In situ NMR EC-NMR electrocatalysis Electrochemical CO_(2)reduction
下载PDF
A p-n WO_(3)/SnSe_(2) Heterojunction for Efficient Photo-assisted Electrocatalysis of the Oxygen Evolution Reaction 被引量:1
6
作者 Ling Bai Shijie Jia +7 位作者 Yidan Gao Chuan Li Xin Chen Shuang Zhou Junwen Han Fengchun Yang Xin Zhang Siyu Lu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期228-235,共8页
Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnS... Water splitting is important to the conversion and storage of renewable energy,but slow kinetics of the oxygen evolution reaction(OER)greatly limits its utility.Here,under visible light illumination,the p-n WO_(3)/SnSe_(2)(WS)heterojunction significantly activates OER catalysis of CoFe-layered double hydroxide(CF)/carbon nanotubes(CNTs).Specifically,the catalyst achieves an overpotential of 224 mV at 10 mA cm^(-2)and a small Tafel slope of 47 mV dec^(-1),superior to RuO_(2)and most previously reported transition metal-based OER catalysts.The p-n WS heterojunction shows strong light absorption to produce photogenerated carriers.The photogenerated holes are trapped by CF to suppresses the charge recombination and facilitate charge transfer,which accelerates OER kinetics and boost the activity for the OER.This work highlights the possibility of using heterojunctions to activate OER catalysis and advances the design of energy-efficient catalysts for water oxidation systems using solar energy. 展开更多
关键词 active species oxygen evolution reaction photo-assisted electrocatalysis photogenerated charge separation p-n WO_(3)/SnSe_(2)heterojunction
下载PDF
Acetic acid-assisted mild dealloying of fine CuPd nanoalloys achieving compressive strain toward high-efficiency oxygen reduction and ethanol oxidation electrocatalysis 被引量:5
7
作者 Danye Liu Yu Zhang +5 位作者 Hui Liu Peng Rao Lin Xu Dong Chen Xinlong Tian Jun Yang 《Carbon Energy》 SCIE CSCD 2023年第7期112-120,共9页
Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Here... Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Herein,to address the deficiencies associated with the commonly used dealloying methods,for example,electrochemical and sulfuric acid/nitric acid treatment,we report an acetic acid-assisted mild strategy to dealloy Cu atoms from the outer surface layers of CuPd alloy nanoparticles to achieve high-efficiency electrocatalysis for oxygen reduction and ethanol oxidation in an alkaline electrolyte.The leaching of Cu atoms by acetic acid exerts an additional compressive strain effect on the surface layers and exposes more active Pd atoms,which is beneficial for boosting the catalytic performance of a dealloyed catalyst for the oxygen reduction reaction(ORR)and the ethanol oxidation reaction(EOR).In particular,for ORR,the CuPd nanoparticles with a Pd/Cu molar ratio of 2:1 after acetic dealloying show a half-wave potential of 0.912 V(vs.RHE)and a mass activity of 0.213 AmgPd^(-1) at 0.9 V,respectively,while for EOR,the same dealloyed sample has a mass activity and a specific activity of 8.4 Amg^(-1) and 8.23 mA cm^(-2),respectively,much better than their dealloyed counterparts at other temperatures and commercial Pd/C as well as a Pt/C catalyst. 展开更多
关键词 compressive strain effect DEALLOYING electrocatalysis ethanol oxidation reaction oxygen reduction reaction
下载PDF
Scalable solid-phase synthesis of defect-rich graphene for oxygen reduction electrocatalysis 被引量:1
8
作者 Chunxiao Dong Li Yang +4 位作者 Cheng Lian Xiaoling Yang Yihua Zhu Hongliang Jiang Chunzhong Li 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期224-232,共9页
Defect-engineered carbon materials have been emerged as promising electrocatalysts for oxygen reduction reaction(ORR)in metal-air batteries.Developing a facile strategy for the preparation of highly active nanocarbon ... Defect-engineered carbon materials have been emerged as promising electrocatalysts for oxygen reduction reaction(ORR)in metal-air batteries.Developing a facile strategy for the preparation of highly active nanocarbon electrocatalysts remains challenging.Herein,a low-cost and simple route is developed to synthesize defective graphene by pyrolyzing the mixture of glucose and carbon nitride.Molecular dynamics simulations reveal that the graphene formation is ascribed to two-dimensional layered feature of carbon nitride,and high compatibility of carbon nitride/glucose systems.Structural measurements suggest that the graphene possesses rich edge and topological defects.The graphene catalyst exhibits higher power density than commercial Pt/C catalyst in a primary Zn-air battery.Combining experimental results and theoretical thermodynamic analysis,it is identified that graphitic nitrogen-modified topological defects at carbon framework edges are responsible for the decent ORR performance.The strategy presented in this work can be can be scaled up readily to fabricate defective carbon materials. 展开更多
关键词 Carbon materials electrocatalysis Oxygen reduction reaction Solid-phase synthesis Zn-air battery
下载PDF
Inner-pore reduction nucleation of palladium nanoparticles in highly conductive wurster-type covalent organic frameworks for efficient oxygen reduction electrocatalysis 被引量:1
9
作者 Weiwen Wang Lu Zhang +4 位作者 Tianping Wang Zhen Zhang Xiangnan Wang Chong Cheng Xikui Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期543-552,I0014,共11页
Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their ... Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their poor conductivity represents the main obstruction to their practical application.Here,we reported a novel synthesis strategy for synergistically endowing a triphenylamine-based COFs with improved electrical conductivity and excellent catalytic activity for oxygen reduction,via the in-situ redox deposition and confined growth of palladium nanoparticles inside the porous structure of COFs using reductive triphenylamine frameworks as reducing agent;meanwhile,the triphenylamine unit was oxidized to radical cation structure and affords radical cation COFs with conductivity as high as3.2*10^(-1) S m^(-1).Such a uniform confine palladium nanoparticle on highly conductive COFs makes it an efficient electrocatalyst for four-electron oxygen reduction reaction(4e-ORR),showing excellent activities and fast kinetics with a remarkable half-wave potential(E_(1/2))of 0.865 V and an ultralow Tafel slope of 39.7 mV dec^(-1) in alkaline media even in the absence of extra commercial conductive fillers.The generality of this strategy was proved by preparing the different metal and metal alloy nanoparticles supported on COFs(Au@COF,Pt@COF,AuPd@COF,AgPd@COF,and PtPd@COF)using reductive triphenylamine frameworks as reducing agent.This work not only provides a facile strategy for the fabrication of highly conductive COF supported ORR electrocatalysts,but also sheds new light on the practical application of Zn-air battery. 展开更多
关键词 Covalent organic frameworks Wurster-type structure In-situ reduction nucleation Palladium nanoparticles Oxygen reduction electrocatalysis
下载PDF
A cobalt(Ⅱ)porphyrin with a tethered imidazole for efficient oxygen reduction and evolution electrocatalysis 被引量:1
10
作者 Xialiang Li Ping Li +10 位作者 Jindou Yang Lisi Xie Ni Wang Haitao Lei Chaochao Zhang Wei Zhang Yong-Min Lee Weiqiang Zhang Shunichi Fukuzumi Wonwoo Nam Rui Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期617-621,I0015,共6页
Electrocatalytic oxygen reduction and evolution reactions are involved in new energy conversion and storage technologies,such as various fuel cells and metal-air batteries and also water splitting devices[1,2].However... Electrocatalytic oxygen reduction and evolution reactions are involved in new energy conversion and storage technologies,such as various fuel cells and metal-air batteries and also water splitting devices[1,2].However,both reactions are very slow in kinetics,and thus catalysts are required[3,4]. 展开更多
关键词 Molecular electrocatalysis Cobalt porphyrin Axial ligand effect Oxygen reduction reaction Oxygen evolution reaction
下载PDF
Rare earth alloy nanomaterials in electrocatalysis 被引量:1
11
作者 Yifei Li Xilin Yuan +5 位作者 Ping Wang Lulin Tang Miao He Pangen Li Jiang Li Zhenxing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期574-594,I0014,共22页
With the rapid development of society and economy, the excessive consumption of fossil energy has led to the global energy and environment crisis. In order to explore the sustainable development of new energy, researc... With the rapid development of society and economy, the excessive consumption of fossil energy has led to the global energy and environment crisis. In order to explore the sustainable development of new energy, research based on electrocatalysis has attracted extensive attention in the academic circle. The main challenge in this field is to develop nano-catalysts with excellent electrocatalytic activity and selectivity for target products. The state of the active site in catalyst plays a decisive role in the activity and selectivity of the reaction. In order to design efficient and excellent catalysts, it is an effective means to adjust the electronic structure of catalysts. Electronic effects are also called ligand effects. By alloying with rare earth(RE) elements, electrons can be redistributed between RE elements and transition metal elements, achieving accurate design of the electronic structure of the active site in the alloy. Because of the unique electronic structure of RE, it has been paid attention in the field of catalysis. The outermost shell structure of RE elements is basically the same as that of the lower shell, except that the number of electrons in the 4f orbital is different, but the energy level is similar, so their properties are very similar. When RE elements form compounds, both the f electrons in the outermost shell and the d electrons in the lower outer shell can participate in bonding. In addition, part of the 4f electrons in the third outer shell can also participate in bonding.In order to improve the performance of metal catalysts, alloying provides an effective method to design advanced functional materials. RE alloys can integrate the unique electronic structure and catalytic behavior of RE elements into metal materials, which not only provides an opportunity to adjust the electronic structure and catalytic activity of the active component, but also enhances the structural stability of the alloy and is expected to significantly improve the catalytic performance of the catalyst. From the perspective of electronic and catalytic activity, RE elements have unique electronic configuration and lanthanide shrinkage effect. Alloying with RE elements will make the alloy have more abundant electronic structure, activity, and spatial arrangement, effectively adjusting the reaction kinetics of the electrochemical process of the catalyst. In this paper, the composition,structure, synthesis of RE alloys and their applications in the field of electrocatalysis are summarized, including the hydrogen evolution reaction, the oxygen evolution reaction, the oxygen reduction reaction, the methanol oxidation reaction, the ethanol oxidation reaction, and other catalytic reactions. At the same time, the present challenges of RE alloy electrocatalytic materials are summarized and their future development direction is pointed out. In the field of electrocatalysis, the cost of catalyst is too high and the stability is not strong. Therefore, the testing process should be related to the actual application, and the test method should be standardized, so as to carry forward the field of electrocatalysis. 展开更多
关键词 Rare earth Alloy nanomaterials electrocatalysis Preparation methods Hydrogen evolution reaction Oxygen reduction reaction Methanol oxidation reaction Ethanol oxidation reaction
下载PDF
Standard-state entropies and their impact on the potential-dependent apparent activation energy in electrocatalysis
12
作者 Kai S.Exner 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期247-254,I0008,共9页
The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted t... The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted the concept of Eappand combined it with the Butler-Volmer theory.Certain observations though,such as potential-dependent fluctuations of Eapp,are yet surprising because they conflict with the proposed linear decrease in Eappwith increasing overpotential.The most common explanation for this finding refers to coverage changes upon alterations in the temperature or the applied electrode potential.In the present contribution,it is demonstrated that the modulation of surface coverages cannot entirely explain potential-dependent oscillations of Eapp,and rather the impact of entropic contributions of the transition states has been overlooked so far.In the case of a nearly constant surface coverage,these entropic contributions can be extracted by a dedicated combination of Tafel plots and temperature-dependent experiments. 展开更多
关键词 electrocatalysis Standard-state entropy Microkinetic modeling Apparent activation energy Degree of rate control
下载PDF
A Novel Electrocatalysis Method for Organic Pollutants Degradation 被引量:5
13
作者 Zhou, MH Wu, ZC Wang, DH 《Chinese Chemical Letters》 SCIE CAS CSCD 2001年第10期929-932,共4页
A novel electrocatalysis, ferrous ion catalyzed anodic-cathodic electrocatalysis (FACEC), was developed for organic pollutants degradation, which could promote the degradation by achieving synergetic effects of both a... A novel electrocatalysis, ferrous ion catalyzed anodic-cathodic electrocatalysis (FACEC), was developed for organic pollutants degradation, which could promote the degradation by achieving synergetic effects of both anodic oxidation and cathodic indirect oxidation. The degradation rate of model pollutants - phenol by FACEC could increase by nearly 30% comparing with that of anodic electrocatalysis, and the current efficiency could reach 67%. 展开更多
关键词 electrocatalysis synergetic effect phenol degradation
下载PDF
Electrocatalysis of carbon anode in aluminium electrolysis 被引量:4
14
作者 LAIYanqing LIUYexiang +1 位作者 YANGJianhong THONSTADJomar 《Rare Metals》 SCIE EI CAS CSCD 2002年第2期117-122,共6页
The anodic over voltage of the carbon anode in aluminumelectrolysis is of the order of 0.6 V at normal current densities.However, it can be reduced somewhat by doping the anode carbon withvarious inorganic compounds. ... The anodic over voltage of the carbon anode in aluminumelectrolysis is of the order of 0.6 V at normal current densities.However, it can be reduced somewhat by doping the anode carbon withvarious inorganic compounds. A new apparatus was designed to improvethe precision of over voltage measurements. Anodes were doped withMgAl_2O_4 and AlF_3 both by impregnation of the coke and by addingpowder, and the measured over voltage was compared with that ofUndoped samples. For prebake type anodes baked at around 1150 deg. C,the anodic overvoltage was reduced by 40-60 mV, And for Soderbergtype anodes, baked at 950 deg. C, by 60-80 mV. 展开更多
关键词 electrocatalysis carbon anode aluminum electrolysis
下载PDF
Covalent triazine frameworks materials for photo-and electrocatalysis
15
作者 Aoji Liang Wenbin Li +5 位作者 Anbai Li Hui Peng Guofu Ma Lei Zhu Ziqiang Lei Yuxi Xu 《Nano Research》 SCIE EI CSCD 2024年第9期7830-7839,共10页
Covalent triazine frameworks(CTFs)are a class of unique two-dimensional nitrogen-rich triazine framework with adjustable chemical and electronic structures,rich porosity,good stability and excellent semiconductivity,w... Covalent triazine frameworks(CTFs)are a class of unique two-dimensional nitrogen-rich triazine framework with adjustable chemical and electronic structures,rich porosity,good stability and excellent semiconductivity,which enable great various applications in efficient gas/molecular adsorption and separation,energy storage and conversion,especially photo-and electrocatalysis.Different synthesis strategies strongly affect the morphology of CTFs and play an important role in their structure and properties.In this concept,we provide a comprehensive and systematic review of the synthesis methods such as ionothermal synthesis,phosphorus pentoxide catalytic method,polycondensation and ultra-strong acid catalyzed method,and applications of CTFs in photo-and electro-catalysis.Finally we offer some insights into the future development progress of CTFs materials for catalytic applications. 展开更多
关键词 covalent triazine frameworks synthetic strategy PHOTOCATALYSIS electrocatalysis
原文传递
Synergetic Effects of UV/Fe^(3+) Combined with Electrocatalysis for p-Nitrophenol Degradation 被引量:3
16
作者 Ming Hua ZHOU Zu Cheng WU Da Hui WANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2002年第4期375-378,共4页
Synergetic effects for p-nitrophenol degradation were observed in the combination of two-advanced oxidation processes, UV/Fe3+ and electrocatalysis. The enhancement of removal rate for p-nitrophenol and COD was aroun... Synergetic effects for p-nitrophenol degradation were observed in the combination of two-advanced oxidation processes, UV/Fe3+ and electrocatalysis. The enhancement of removal rate for p-nitrophenol and COD was around 123% and 278%, respectively. The possible contributions for the synergetic effects were the electrochemically regeneration of ferric ion and the role of the oxygen that formed on the anode. 展开更多
关键词 UV/Fe3+ electrocatalysis synergetic effect p-nitrophenol degradation AOPs.
下载PDF
A review of nanocarbons in energy electrocatalysis: Multifunctional substrates and highly active sites 被引量:15
17
作者 Cheng Tang Maria-Magdalena Titirici Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1077-1093,共17页
Nanocarbons are of progressively increasing importance in energy electrocatalysis, including oxygen reduction, oxygen evolution, hydrogen evolution, COreduction, etc. Precious-metal-free or metal-free nanocarbon-based... Nanocarbons are of progressively increasing importance in energy electrocatalysis, including oxygen reduction, oxygen evolution, hydrogen evolution, COreduction, etc. Precious-metal-free or metal-free nanocarbon-based electrocatalysts have been revealed to potentially have effective activity and remarkable durability, which is promising to replace precious metals in some important energy technologies,such as fuel cells, metal–air batteries, and water splitting. In this review, rather than overviewing recent progress completely, we aim to give an in-depth digestion of present achievements, focusing on the different roles of nanocarbons and material design principles. The multifunctionalities of nanocarbon substrates(accelerating the electron and mass transport, regulating the incorporation of active components,manipulating electron structures, generating confinement effects, assembly into 3 D free-standing electrodes) and the intrinsic activity of nanocarbon catalysts(multi-heteroatom doping, hierarchical structure,topological defects) are discussed systematically, with perspectives on the further research in this rising research field. This review is inspiring for more insights and methodical research in mechanism understanding, material design, and device optimization, leading to a targeted and high-efficiency development of energy electrocatalysis. 展开更多
关键词 NANOCARBON Energy electrocatalysis Oxygen reduction Oxygen evolution Hydrogen evolution CO_2 reduction Electron structure Strong coupling effect Hierarchical structure DOPING Defect Metal–air battery Fuel cell Water splitting
下载PDF
High-temperature electrocatalysis and key materials in solid oxide electrolysis cells 被引量:13
18
作者 Lingting Ye Kui Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期736-745,共10页
Solid oxide electrolysis cells(SOECs)can convert electricity to chemicals with high efficiency at ~600-900℃,and have attracted widespread attention in renewable energy conversion and storage.SOECs operate in the inve... Solid oxide electrolysis cells(SOECs)can convert electricity to chemicals with high efficiency at ~600-900℃,and have attracted widespread attention in renewable energy conversion and storage.SOECs operate in the inverse mode of solid oxide fuel cells(SOFCs)and therefore inherit most of the advantages of SOFC materials and energy conversion processes.However,the external bias that drives the electrochemical process will strongly change the chemical environments in both in the cathode and anode,therefore necessitating careful reconsideration of key materials and electrocatalysis processes.More importantly,SOECs provide a unique advantage of electrothermal catalysis,especially in converting stable low-carbon alkanes such as methane to ethylene with high selectivity.Here,we review the state-of-the-art of SOEC research progress in electrothermal catalysis and key materials and provide a future perspective. 展开更多
关键词 electrocatalysis Solid oxide electrolysis cell CATHODE ANODE ELECTROLYTE
下载PDF
In-situ doping-induced lattice strain of NiCoP/S nanocrystals for robust wide pH hydrogen evolution electrocatalysis and supercapacitor 被引量:5
19
作者 Yan Lin Xiaomeng Chen +2 位作者 Yongxiao Tuo Yuan Pan Jun Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期27-35,I0002,共10页
Developing high-efficiency multifunctional nanomaterials is promising for wide p H hydrogen evolution reaction(HER) and energy storage but still challenging. Herein, a novel in-situ doping-induced lattice strain strat... Developing high-efficiency multifunctional nanomaterials is promising for wide p H hydrogen evolution reaction(HER) and energy storage but still challenging. Herein, a novel in-situ doping-induced lattice strain strategy of NiCoP/S nanocrystals(NCs) was proposed through using seed crystal conversion approach with NiCo_(2)S_(4) spinel as precursor. The small amount of S atoms in NiCoP/S NCs perturbed the local electronic structure, leading to the atomic position shift of the nearest neighbor in the protocell and the nanoscale lattice strain, which optimized the H* adsorption free energy and activated H_(2)O molecules, resulting the dramatically elevated HER performance within a wide p H range. Especially, the NiCoP/S NCs displayed better HER electrocatalytic activity than comical 20% Pt/C at high current density in 1 M KOH and natural seawater: it only needed 266 m V vs. reversible hydrogen electrode(RHE) and660 m V vs. RHE to arrive the current density of 350 m A cm^(-2) in 1 M KOH and natural seawater, indicating the application prospect for industrial high current. Besides, NiCoP/S NCs also displayed excellent supercapacitor performance: it showed high specific capacity of 2229.9 F g^(-1) at 1 A g^(-1) and energy density of87.49 Wh kg^(-1), when assembled into an all-solid-state flexible device, exceeding performance of most transition metal phosphides. This work provides new insights into the regulation in electronic structure and lattice strain for electrocatalytic and energy storage applications. 展开更多
关键词 Heteroatom doping Lattice strain Hydrogen evolution electrocatalysis Sea water electrocatalysis SUPERCAPACITOR
下载PDF
Carbon quantum dots for advanced electrocatalysis 被引量:13
20
作者 Lin Tian Zhao Li +3 位作者 Peng Wang Xiuhui Zhai Xiang Wang Tongxiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期279-294,共16页
Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outstanding features of low cost,nontoxicity,large surface ar... Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outstanding features of low cost,nontoxicity,large surface area,high electrical conductivity,and rich surface functional groups.By virtue of their rapid electron transfer and large surface area,CQDs also emerge as promising functional materials for the applications in energy-conversion sectors through electrocatalysis.Besides,the rich functional groups on the surface of CQDs offer abundant anchoring sites and active sites for the engineering of multicomponent and high-performance composite materials.More importantly,the heteroatom in the CQDs could effectively tailor the charge distribution to promote the electron transfer via internal interactions,which is crucial to the enhancement of electrocatalytic performance.Herein,an overview about recent progress in preparing CQDs-based composites and employing them as promising electrode materials to promote the catalytic activity and stability for electrocatalysis is provided.The introduced CQDs could enhance the conductivity,modify the morphology and crystal phase,optimize the electronic structure,and provide more active centers and defect sites of composites.After establishing a deep understanding of the relationship between CQDs and electrocatalytic performances,the issues and challenges for the development of CQDs-based composites are discussed. 展开更多
关键词 Carbon quantum dots CONDUCTIVITY Electron transfer electrocatalysis
下载PDF
上一页 1 2 146 下一页 到第
使用帮助 返回顶部