Low resistivity and highly transparent ITO conducting films for solar cell applications were fabricated at low temperature by r.f. magnetron sputtering. ITO films were deposited on glass and silicon substrate. Electri...Low resistivity and highly transparent ITO conducting films for solar cell applications were fabricated at low temperature by r.f. magnetron sputtering. ITO films were deposited on glass and silicon substrate. Electrical, optical, structural and morphological properties of the ITO films were investigated in terms of the preparation conditions. The annealing treatment has improved the properties of the ITO films at different degree. The maximum transmittance of the obtained ITO films in the visible range is over 92%, and the low resistivity for the ITO films are about 3.85×10-4 Ω·cm at 80 ℃, 80 W after annealing.展开更多
CeO2-TiO2 films and CeO2-TiO/SnO2:Sb (6 mol%) double films were deposited on glass substrates by radio-frequency magnetron sputtering (R.F. Sputtering), using SnO2:Sb(6 mol%) target, and CeO2- TiO2 targets wit...CeO2-TiO2 films and CeO2-TiO/SnO2:Sb (6 mol%) double films were deposited on glass substrates by radio-frequency magnetron sputtering (R.F. Sputtering), using SnO2:Sb(6 mol%) target, and CeO2- TiO2 targets with different molar ratio of CeO2 to TiO2 (CeO2:TiO2-0:1.0; 0.1:0.9; 0.2:0.8; 0.3:0.7; 0.4:0.6; 0.5:0.5; 0.6:0.4; 0.7:0.3; 0.8:0.2; 0.9:0.1; 1.0:0). The films are characterized by UV-visible transmission and infrared reflection spectra, scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The obtained results show that the amorphous phases composed of CeO2-TiO2 play an important role in absorbing UV, there are Ce^3-, Ce^4- and Ti^4- on the surface of the films; the glass substrates coated with CeO2-TiO2 (Ce/Ti=0.5:0.5; 0.6:0.4)/SnO2:Sb(6 mol%) double films show high absorbing UV(〉99), high visible light transmission (75%) and good infrared reflection (〉70%). The sheet resistance of the films is 30-50 Ω/□. The glass substrates coated with the double functional films can be used as window glass of buildings, automobile and so on.展开更多
基金This project was financially supported by the Natural Science Foundation of Hebei Province, China. (No. F2005000073).
文摘Low resistivity and highly transparent ITO conducting films for solar cell applications were fabricated at low temperature by r.f. magnetron sputtering. ITO films were deposited on glass and silicon substrate. Electrical, optical, structural and morphological properties of the ITO films were investigated in terms of the preparation conditions. The annealing treatment has improved the properties of the ITO films at different degree. The maximum transmittance of the obtained ITO films in the visible range is over 92%, and the low resistivity for the ITO films are about 3.85×10-4 Ω·cm at 80 ℃, 80 W after annealing.
基金the program for Changjiang Scholars and Innovative Research Team in University (No.IRT0547
文摘CeO2-TiO2 films and CeO2-TiO/SnO2:Sb (6 mol%) double films were deposited on glass substrates by radio-frequency magnetron sputtering (R.F. Sputtering), using SnO2:Sb(6 mol%) target, and CeO2- TiO2 targets with different molar ratio of CeO2 to TiO2 (CeO2:TiO2-0:1.0; 0.1:0.9; 0.2:0.8; 0.3:0.7; 0.4:0.6; 0.5:0.5; 0.6:0.4; 0.7:0.3; 0.8:0.2; 0.9:0.1; 1.0:0). The films are characterized by UV-visible transmission and infrared reflection spectra, scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The obtained results show that the amorphous phases composed of CeO2-TiO2 play an important role in absorbing UV, there are Ce^3-, Ce^4- and Ti^4- on the surface of the films; the glass substrates coated with CeO2-TiO2 (Ce/Ti=0.5:0.5; 0.6:0.4)/SnO2:Sb(6 mol%) double films show high absorbing UV(〉99), high visible light transmission (75%) and good infrared reflection (〉70%). The sheet resistance of the films is 30-50 Ω/□. The glass substrates coated with the double functional films can be used as window glass of buildings, automobile and so on.