1 Introduction Salt lakes are widely distributed in the western of China,especially in the area of Qinghai-Xizang(Tibet)Plateau.A series of salt lakes in the Qaidam Basin,located in Qinghai Province,China,is famous fo...1 Introduction Salt lakes are widely distributed in the western of China,especially in the area of Qinghai-Xizang(Tibet)Plateau.A series of salt lakes in the Qaidam Basin,located in Qinghai Province,China,is famous for their abundance of lithium,potassium and boron resources(Zheng et al,1988;Deng et al,2012).It is well known that the展开更多
Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two...Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction, then general equations of velocities of solid phase and liquid phase were founded in two-phase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.展开更多
The aim of this work was to develop an automated on-line solid phase extraction(SPE)with liquid chromatography-tandem mass spectrometry method for the detection of fifteen sulfonamides in pork and fish samples.Samples...The aim of this work was to develop an automated on-line solid phase extraction(SPE)with liquid chromatography-tandem mass spectrometry method for the detection of fifteen sulfonamides in pork and fish samples.Samples were extracted with 0.2%formic acid acetonitrile solution,purified by on-line SPE device with HLB column,then separated by XBridge C18 column,using 0.1%formic acid solution and acetonitrile as the mobile phase.Mass spectrometric data was acquired under multiple reaction monitoring(MRM)mode using positive ionization electrospray.Internal standard method was used in the quantification,good linear relationship was got in range of 0.1–100 ng/mL and correlation coefficient was higher than 0.9990.The limits of detection were in the range of 0.125–2.00g/kg and the limits of quantitation were in the range of 0.250–5.00g/kg.Recoveries of the method were in range of 78.3%–99.3%,relative standard deviation were lower than 10%.The method was simple,sensitivity,and could be used for routine supervision and analysis of fifteen sulfonamides in pork and fish.展开更多
[Objective] This study aimed to develop a method of C_18-functionalized magnetic silica nanoparticles solid phase extraction-high performance liquid chro- matography-tandem mass spectrometry for the determination of s...[Objective] This study aimed to develop a method of C_18-functionalized magnetic silica nanoparticles solid phase extraction-high performance liquid chro- matography-tandem mass spectrometry for the determination of sulfadimidine in royal jelly. [Method] The royal jelly samples were pretreated by MCX SPE column and C_18-functionalized magnetic silica nanoparticles, and the purified samples were de- tected by HPLC-MS/MS. [Result] The detection method showed a good linear rela- tionship in the range of 5-80 ugkg (r=0.993 1). The recovery ranges were between 93%- 104% with the relative standard deviations (RSD) below 11.3%. [Conclusion] Combined with automation equipment, the method is simple, fast, time-saving, and easy to real- ize the automation of sulfadimidine in the royal jelly samples before determination.展开更多
The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the ...The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k-~ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.展开更多
To establish an analytical method for determination of four bisphenols (BPA, BPB, BPF, and BPS) and two alkylphenols (4-n-OP, 4-n-NP) in water by ultra performance liquid chromatography- tandem mass spectrometry ...To establish an analytical method for determination of four bisphenols (BPA, BPB, BPF, and BPS) and two alkylphenols (4-n-OP, 4-n-NP) in water by ultra performance liquid chromatography- tandem mass spectrometry (UPLC/MS/MS). The water samples were extracted and condensed with solid-phase extraction (SPE) using C18 cartridges and eluted by acetonitrile. Separation was carried out with Acquity BEH C8 column and detection were performed by UPLC/MS/MS. Quantification was calculated by using the internal standard BPA-d16 and 4-n-NP-d8. The linear correlation coefficients of these compounds in the range of 1.0-100.0μg/L were all over 0.999. The minimum detectable concentrations were 0.75-1.0 ng/L, and the recoveries ranged from 87.0% to 106.9%.展开更多
The transient behavior of centrifugal pumps during transient operating periods, such as startup and stopping, has drawn more and more attention recently because of urgent needs in engineering. Up to now, almost all th...The transient behavior of centrifugal pumps during transient operating periods, such as startup and stopping, has drawn more and more attention recently because of urgent needs in engineering. Up to now, almost all the existing studies on this behavior are limited to using water as working fluid. The study on the transient behavior related to solid-liquid two-phase flow has not been seen yet. In order to explore the transient characteristics of a high specific-speed centrifugal pump during startup period delivering the pure water and solid-liquid two-phase flow, the transient flows inside the pump are numerically simulated using the dynamic mesh method. The variable rotational speed and flow rate with time obtained from experiment are best fitted as the function of time, and are written into computational fluid dynamics (CFD) code-FLUENT by using a user defined function. The predicted heads are compared with experimental results when pumping pure water. The results show that the difference in the transient performance during startup period is very obvious between water and solid-liquid two-phase flow during the later stage of startup process. Moreover, the time for the solid-liquid two-phase flow to achieve a stable condition is longer than that for water. The solid-liquid two-phase flow results in a higher impeller shaft power, a larger dynamic reaction force, a more violent fluctuation in pressure and a reduced stable pressure rise comparing with water. The research may be useful to tmderstanding on the transient behavior of a centrifugal pump under a solid-liquid two-phase flow during startup period.展开更多
To assess uncertainty of determination of MC-LR in environmental samples by solid phase extraction- ultra performance liquid chromatography- tandem mass spectrometry,the sources of the uncertainty were evaluated first...To assess uncertainty of determination of MC-LR in environmental samples by solid phase extraction- ultra performance liquid chromatography- tandem mass spectrometry,the sources of the uncertainty were evaluated firstly,and the expanded uncertainty was calculated finally.The results show that when MC-LR concentration in the water samples was 0.50 μg/L,the expanded uncertainty was 0.00628 μg/L(k=2).展开更多
A new, rapid and efficient reverse phase Liquid Chromatography (RP-LC) method was developed for determination of Gibberellin A4 (GA4) in samples of flower stalk of Dasylirion cedrosanum and vegetative tissue of Epithe...A new, rapid and efficient reverse phase Liquid Chromatography (RP-LC) method was developed for determination of Gibberellin A4 (GA4) in samples of flower stalk of Dasylirion cedrosanum and vegetative tissue of Epithelantha micromeris. Purification of GA4 was carried out by solid phase extraction (SPE), in Epithelantha micromeris. In the chromatography method was obtaining a retention time of 2.1 min, using Hypersil GOLD C-18 column (100 × 4.6 mm dim and size particle 5 μ), mobile phase 50/50 acetonitrile/water and a flow 1.0 ml/min. Detection was carried out by a UV detector set at 205 nm, and a quantization limit of 0.4 mg/L. The obtained correlation coefficient was 0.995.展开更多
Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loos...Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.展开更多
Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid pa...Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).展开更多
The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in...The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in pipelines. Presently, the method of characteristics is widely used to solve classical hydraulic transient problems. However, when it is used to solve coupling hydraulic transient problems, excessive interpolation errors may be introduced into the results due to unavoidable multiwave interpolated calculations. To deal with the problem, a finite difference scheme based on the Steger- Warming flux vector splitting is proposed. A flux vector splitting scheme is established for the coupling hydraulic transient model of gas-liquid-solid three-phase mixed flow in the pipelines. The flux subvectors are then discretized by the Lax-Wendroff central difference scheme and the Warming-Beam upwind difference scheme with second-order precision in both time and space. Under the Rankine-Hugoniot conditions and the corresponding boundary conditions, an effective solution to those points located at the boundaries is developed, which can avoid the problem beyond the calculation region directly induced by the second-order discrete technique. Numerical and experimental verifications indicate that the proposed scheme has several desirable advantages including high calculation precision, excellent shock wave capture capability without false numerical oscillation, low sensitivity to the Courant number, and good stability.展开更多
Liquid-liquid extraction-thin layer chromatography (LLE-TLC) has been a common and routine combined method for detection of drugs in biological materials. Solid-phase extraction (SPE) is gradually replacing the tr...Liquid-liquid extraction-thin layer chromatography (LLE-TLC) has been a common and routine combined method for detection of drugs in biological materials. Solid-phase extraction (SPE) is gradually replacing the tra- ditional LLE method. High performance thin layer chromatography (HPTLC) has several advantages over TLC. The present work studied the higher efficiency of a new SPE-HPTLC method over that of a routine LLE-TLC method, in extraction and detection of urinary morphine. Fifty-eight urine samples, primarily identified as mor- phine-positive samples by a strip test, 'were re-screened by LLE-TLC and SPE-HPTLC. The results of LLE-TLC and SPE-HPTLC were then compared with each other. The results showed that the SPE-HPTLC detected 74% of total samples as morphine-positive samples whereas the LLE-TLC detected 48% of the same samples. We further discussed the effect of codeine abuse on TLC analysis of urinary morphine. Regarding the importance of morphine detection in urine, the present combined SPE-HPTLC method is suggested as a replacement method for detection of urinary morphine by many reference laboratories.展开更多
Extraction equilibria of three low volatility liquids (benzyl alcohol,2-phenethyl alcohol and citronellol)separately with supercritical CO<sub>2</sub> were determined in a semi-flow apparatus at two temp...Extraction equilibria of three low volatility liquids (benzyl alcohol,2-phenethyl alcohol and citronellol)separately with supercritical CO<sub>2</sub> were determined in a semi-flow apparatus at two temperatures(308.2K and318.2K)and pressures up to 20MPa.The solubility data of CO<sub>2</sub> in methyl benzoate were also obtained at thetwo temperatures in two-phase region.The experimental data were correlated by means of the Peng-Robinsonequation of state with two characteristic parameters.展开更多
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr...A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.展开更多
An efficient preparative method was successfully developed for isolation and purification of unstable components from medicinal plant extracts, using a combined method of preparative high performance liquid chro-matog...An efficient preparative method was successfully developed for isolation and purification of unstable components from medicinal plant extracts, using a combined method of preparative high performance liquid chro-matography(HPLC) and solid-phase extraction(SPE). The aim of this study was to obtain an effective method with high preparative efficiency and importantly to avoid the transformation of unstable compounds. The preparative HPLC system was based on an LC/MS controlled four-channel autopurification system. The SPE method was performed with a C18 packing material to trap the target compounds and to remove the acidic additive derived from the mobile phase. Using this method, the unstable iridoid glucosides(IGs) as model compounds were successfully isolated and purified from the extract of Hedyotis diffusa Willd. Six IGs(including one new minor IG) and one nucleotide compound were simultaneously obtained, each with a purity of 91% as determined by HPLC. The structures of the isolated compounds were identified by UPLC/Q-TOF MS, UV, 1D and/or 2D NMR. It was demonstrated that the combination of preparative HPLC with SPE is a versatile tool for preparative purification of unstable compounds from complex natural products.展开更多
[Method] This study aimed to determine trace amount of polycyclic aromatic hydrocarbons(PAHs) in urban sewage by using solid-phase extraction(SPE) coupled with high performance liquid chromatograph(HPLC).[Method] From...[Method] This study aimed to determine trace amount of polycyclic aromatic hydrocarbons(PAHs) in urban sewage by using solid-phase extraction(SPE) coupled with high performance liquid chromatograph(HPLC).[Method] From the aspects of solid-phase extraction column,elution solvent,elution volume,elution speed and so forth,the test conditions of SPE-HPLC method were optimized,and trace amount of PAHs in urban sewage was determined.[Result] The optimized solid-phase extraction conditions were SUPELCLEAN LC-18 solid-phase extraction column,methylene dichloride as elution solvent,15 ml elution volume,2 ml/min elution speed,5 ml/min loading speed,1 000 ml water with 200 ml methanol loading volume.Under the optimized extraction conditions,the recovery was high,namely 76.3%-105.2%;relative standard deviation was 3.8%-6.0%,showing good precision;detection limit was low,only 0.000 8-0.048 0 μg/L.[Conclusion] This method is user-friendly,with high sensitivity and good precision,and suitable for continuous determination of a large volume of water samples.展开更多
We studied the solid-liquid transformation of low-grade solid potash deposit in Dalangtan Basin and simplified the liquid phase system.We did experiments to optimize conditions of the solid-liquid transformation.The S...We studied the solid-liquid transformation of low-grade solid potash deposit in Dalangtan Basin and simplified the liquid phase system.We did experiments to optimize conditions of the solid-liquid transformation.The Suitable展开更多
In this paper, two microwave irradiation methods:(i) liquid-phase microwave irradiation(MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and(ii...In this paper, two microwave irradiation methods:(i) liquid-phase microwave irradiation(MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and(ii) solid-phase MWI reduction of graphite oxide powder have been successfully carried out to reduce graphite oxide. The reduced graphene oxide products are thoroughly characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectral analysis, Raman spectroscopy, UV-Vis absorption spectral analysis,and four-point probe conductivity measurements. The results show that both methods can efficiently remove the oxygencontaining functional groups attached to the graphite layers, though the solid-phase MWI reduction method can obtain far more efficiently a higher quality-reduced graphene oxide with fewer defects. The I(D)/I(G) ratio of the solid-phase MWI sample is as low as 0.46, which is only half of that of the liquid-phase MWI samples. The electrical conductivity of the reduced graphene oxide by the solid method reaches 747.9 S/m, which is about 25 times higher than that made by the liquid-phase method.展开更多
A low cost,rapid and sensitive preparation method of silica gel supported ionic liquid(SGSIL)combined with matrix solid phase dispersion(MSPD)followed by high performance liquid chromatography(HPLC)with ultraviolet de...A low cost,rapid and sensitive preparation method of silica gel supported ionic liquid(SGSIL)combined with matrix solid phase dispersion(MSPD)followed by high performance liquid chromatography(HPLC)with ultraviolet detection(UV)is proposed,and it was applied to determine the seven active compounds in Salvia Miltiorrhiza herb.SGSIL and ionic liquid[BMIM]BF4 were used as the adsorbent and the green elution reagent in the MSPD procedure.Several extraction conditions including type of filler and elution solvent,the volume of elution solvent,material liquid ratio were optimized.Under the optimum conditions,the SGSIL-MSPD-HPLC method showed a low limit of detection(LOD,S/N=3)of 0.0122-0.8788μg/mL for standard solution,limit of quantification(LOQ,S/N=10)of 0.0406-2.9292μg/mL for standard solution,wide linear range from 1.56 to 2000μg/mL for all compounds for standard solution,correlation coefficients(r)of more than 0.9990,acceptable reproducibility(relative standard deviations,RSDs<3.54%),and precision of RSDs<3.36%for intra-day,RSDs<3.50%for inter-day.The satisfactory recoveries ranged from 96.4 to 102.5,with RSDs less than 3.45%.The developed SGSIL-MSPD method is easier and more suitable for the determination of the seven active compounds in Salvia Miltiorrhiza herb than the traditional ultrasonic extraction.It was an effective and efficient method for the extraction and quantification of the seven active compounds in traditional Chinese herbal samples.展开更多
基金Financial support from the NSFCs (21106103, 21276194 and 21306136)the Specialized Research Funds for the Doctoral Program of Chinese Higher Education (20101208110003, 20111208120003)+1 种基金the Natural Science Foundation of Tianjin (12JCQNJC03400)Senior Professor Program for TUST (20100405)
文摘1 Introduction Salt lakes are widely distributed in the western of China,especially in the area of Qinghai-Xizang(Tibet)Plateau.A series of salt lakes in the Qaidam Basin,located in Qinghai Province,China,is famous for their abundance of lithium,potassium and boron resources(Zheng et al,1988;Deng et al,2012).It is well known that the
基金Project supported by the Talent Fund of the Ministry of Communication of China(No.95050508) the Fund of Western Communication of China(No.200332822047) the Key Science Fund of the Ministry of Communication of China(No.95060233)
文摘Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction, then general equations of velocities of solid phase and liquid phase were founded in two-phase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.
基金This work was supported by“National Key Research and Development Program of China”(Project No.2018YFC1603400)Science and Technology Program of Hebei Province(Project No.19225503D).
文摘The aim of this work was to develop an automated on-line solid phase extraction(SPE)with liquid chromatography-tandem mass spectrometry method for the detection of fifteen sulfonamides in pork and fish samples.Samples were extracted with 0.2%formic acid acetonitrile solution,purified by on-line SPE device with HLB column,then separated by XBridge C18 column,using 0.1%formic acid solution and acetonitrile as the mobile phase.Mass spectrometric data was acquired under multiple reaction monitoring(MRM)mode using positive ionization electrospray.Internal standard method was used in the quantification,good linear relationship was got in range of 0.1–100 ng/mL and correlation coefficient was higher than 0.9990.The limits of detection were in the range of 0.125–2.00g/kg and the limits of quantitation were in the range of 0.250–5.00g/kg.Recoveries of the method were in range of 78.3%–99.3%,relative standard deviation were lower than 10%.The method was simple,sensitivity,and could be used for routine supervision and analysis of fifteen sulfonamides in pork and fish.
基金Supported by the Innovation Fund for Technology Based Firms of Ministry of Science and Technology(09C26214425280)the National Key Technology R&D Program during the 12th Five-Year Plan Period(2012BAK17B10)the International S&T Cooperation and Communication Program of China(2011DFA32930)~~
文摘[Objective] This study aimed to develop a method of C_18-functionalized magnetic silica nanoparticles solid phase extraction-high performance liquid chro- matography-tandem mass spectrometry for the determination of sulfadimidine in royal jelly. [Method] The royal jelly samples were pretreated by MCX SPE column and C_18-functionalized magnetic silica nanoparticles, and the purified samples were de- tected by HPLC-MS/MS. [Result] The detection method showed a good linear rela- tionship in the range of 5-80 ugkg (r=0.993 1). The recovery ranges were between 93%- 104% with the relative standard deviations (RSD) below 11.3%. [Conclusion] Combined with automation equipment, the method is simple, fast, time-saving, and easy to real- ize the automation of sulfadimidine in the royal jelly samples before determination.
基金supported by National Natural Science Foundation of China (Grant No. 21076198)Zhejiang Provincial Natural Science Foundation of China (Granted No. R1100530)National Basic Research Program of China (973 Program,Grant No. 2009CB724303)
文摘The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k-~ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.
基金supported by the Preventive medicine and public health research project of Anhui,China(No.2011Y0103)the Natural Science Foundation of Anhui,China(No.11040606M216)
文摘To establish an analytical method for determination of four bisphenols (BPA, BPB, BPF, and BPS) and two alkylphenols (4-n-OP, 4-n-NP) in water by ultra performance liquid chromatography- tandem mass spectrometry (UPLC/MS/MS). The water samples were extracted and condensed with solid-phase extraction (SPE) using C18 cartridges and eluted by acetonitrile. Separation was carried out with Acquity BEH C8 column and detection were performed by UPLC/MS/MS. Quantification was calculated by using the internal standard BPA-d16 and 4-n-NP-d8. The linear correlation coefficients of these compounds in the range of 1.0-100.0μg/L were all over 0.999. The minimum detectable concentrations were 0.75-1.0 ng/L, and the recoveries ranged from 87.0% to 106.9%.
基金supported by National Natural Science Foundation of China(Grant Nos.51076144,51276172)Zhejiang Provincial Natural Science Foundation of China(Grant Nos.R1100530,LY12E06002)National Basic Research Program of China(973 Program,Grant No.2009CB724303)
文摘The transient behavior of centrifugal pumps during transient operating periods, such as startup and stopping, has drawn more and more attention recently because of urgent needs in engineering. Up to now, almost all the existing studies on this behavior are limited to using water as working fluid. The study on the transient behavior related to solid-liquid two-phase flow has not been seen yet. In order to explore the transient characteristics of a high specific-speed centrifugal pump during startup period delivering the pure water and solid-liquid two-phase flow, the transient flows inside the pump are numerically simulated using the dynamic mesh method. The variable rotational speed and flow rate with time obtained from experiment are best fitted as the function of time, and are written into computational fluid dynamics (CFD) code-FLUENT by using a user defined function. The predicted heads are compared with experimental results when pumping pure water. The results show that the difference in the transient performance during startup period is very obvious between water and solid-liquid two-phase flow during the later stage of startup process. Moreover, the time for the solid-liquid two-phase flow to achieve a stable condition is longer than that for water. The solid-liquid two-phase flow results in a higher impeller shaft power, a larger dynamic reaction force, a more violent fluctuation in pressure and a reduced stable pressure rise comparing with water. The research may be useful to tmderstanding on the transient behavior of a centrifugal pump under a solid-liquid two-phase flow during startup period.
文摘To assess uncertainty of determination of MC-LR in environmental samples by solid phase extraction- ultra performance liquid chromatography- tandem mass spectrometry,the sources of the uncertainty were evaluated firstly,and the expanded uncertainty was calculated finally.The results show that when MC-LR concentration in the water samples was 0.50 μg/L,the expanded uncertainty was 0.00628 μg/L(k=2).
文摘A new, rapid and efficient reverse phase Liquid Chromatography (RP-LC) method was developed for determination of Gibberellin A4 (GA4) in samples of flower stalk of Dasylirion cedrosanum and vegetative tissue of Epithelantha micromeris. Purification of GA4 was carried out by solid phase extraction (SPE), in Epithelantha micromeris. In the chromatography method was obtaining a retention time of 2.1 min, using Hypersil GOLD C-18 column (100 × 4.6 mm dim and size particle 5 μ), mobile phase 50/50 acetonitrile/water and a flow 1.0 ml/min. Detection was carried out by a UV detector set at 205 nm, and a quantization limit of 0.4 mg/L. The obtained correlation coefficient was 0.995.
基金supported by the National Natural Science Foundation of China(Grants No.51579170 and 51179118)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51321065)
文摘Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.
基金supported by the Fund of Innovation Research Group of National Natural Science Foundation of China (Grant NO.5052160450323001)Major Program of National Natural Science Foundation of China (Grant No.50536020)
文摘Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).
基金supported by the Natural Science Foundation Project of CQ CSTC (No. 2010BB7421)
文摘The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in pipelines. Presently, the method of characteristics is widely used to solve classical hydraulic transient problems. However, when it is used to solve coupling hydraulic transient problems, excessive interpolation errors may be introduced into the results due to unavoidable multiwave interpolated calculations. To deal with the problem, a finite difference scheme based on the Steger- Warming flux vector splitting is proposed. A flux vector splitting scheme is established for the coupling hydraulic transient model of gas-liquid-solid three-phase mixed flow in the pipelines. The flux subvectors are then discretized by the Lax-Wendroff central difference scheme and the Warming-Beam upwind difference scheme with second-order precision in both time and space. Under the Rankine-Hugoniot conditions and the corresponding boundary conditions, an effective solution to those points located at the boundaries is developed, which can avoid the problem beyond the calculation region directly induced by the second-order discrete technique. Numerical and experimental verifications indicate that the proposed scheme has several desirable advantages including high calculation precision, excellent shock wave capture capability without false numerical oscillation, low sensitivity to the Courant number, and good stability.
文摘Liquid-liquid extraction-thin layer chromatography (LLE-TLC) has been a common and routine combined method for detection of drugs in biological materials. Solid-phase extraction (SPE) is gradually replacing the tra- ditional LLE method. High performance thin layer chromatography (HPTLC) has several advantages over TLC. The present work studied the higher efficiency of a new SPE-HPTLC method over that of a routine LLE-TLC method, in extraction and detection of urinary morphine. Fifty-eight urine samples, primarily identified as mor- phine-positive samples by a strip test, 'were re-screened by LLE-TLC and SPE-HPTLC. The results of LLE-TLC and SPE-HPTLC were then compared with each other. The results showed that the SPE-HPTLC detected 74% of total samples as morphine-positive samples whereas the LLE-TLC detected 48% of the same samples. We further discussed the effect of codeine abuse on TLC analysis of urinary morphine. Regarding the importance of morphine detection in urine, the present combined SPE-HPTLC method is suggested as a replacement method for detection of urinary morphine by many reference laboratories.
文摘Extraction equilibria of three low volatility liquids (benzyl alcohol,2-phenethyl alcohol and citronellol)separately with supercritical CO<sub>2</sub> were determined in a semi-flow apparatus at two temperatures(308.2K and318.2K)and pressures up to 20MPa.The solubility data of CO<sub>2</sub> in methyl benzoate were also obtained at thetwo temperatures in two-phase region.The experimental data were correlated by means of the Peng-Robinsonequation of state with two characteristic parameters.
基金supported by the open foundation of State Key Laboratory of Chemical Engineering (SKL-ChE-18B03)the Municipal Science and Technology Commission of Tianjin (No. 2009ZCKFGX01900)
文摘A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.
基金Supported by the Science and Technology Plan of Liaoning Province, China(No.2006226002)the Project of the Doctor Fund of Hebei University of Science and Technology, China(No.005121)
文摘An efficient preparative method was successfully developed for isolation and purification of unstable components from medicinal plant extracts, using a combined method of preparative high performance liquid chro-matography(HPLC) and solid-phase extraction(SPE). The aim of this study was to obtain an effective method with high preparative efficiency and importantly to avoid the transformation of unstable compounds. The preparative HPLC system was based on an LC/MS controlled four-channel autopurification system. The SPE method was performed with a C18 packing material to trap the target compounds and to remove the acidic additive derived from the mobile phase. Using this method, the unstable iridoid glucosides(IGs) as model compounds were successfully isolated and purified from the extract of Hedyotis diffusa Willd. Six IGs(including one new minor IG) and one nucleotide compound were simultaneously obtained, each with a purity of 91% as determined by HPLC. The structures of the isolated compounds were identified by UPLC/Q-TOF MS, UV, 1D and/or 2D NMR. It was demonstrated that the combination of preparative HPLC with SPE is a versatile tool for preparative purification of unstable compounds from complex natural products.
基金Supported by National Science and Technology Key Project of Water Pollution Control and Management (2012ZX07209-003)
文摘[Method] This study aimed to determine trace amount of polycyclic aromatic hydrocarbons(PAHs) in urban sewage by using solid-phase extraction(SPE) coupled with high performance liquid chromatograph(HPLC).[Method] From the aspects of solid-phase extraction column,elution solvent,elution volume,elution speed and so forth,the test conditions of SPE-HPLC method were optimized,and trace amount of PAHs in urban sewage was determined.[Result] The optimized solid-phase extraction conditions were SUPELCLEAN LC-18 solid-phase extraction column,methylene dichloride as elution solvent,15 ml elution volume,2 ml/min elution speed,5 ml/min loading speed,1 000 ml water with 200 ml methanol loading volume.Under the optimized extraction conditions,the recovery was high,namely 76.3%-105.2%;relative standard deviation was 3.8%-6.0%,showing good precision;detection limit was low,only 0.000 8-0.048 0 μg/L.[Conclusion] This method is user-friendly,with high sensitivity and good precision,and suitable for continuous determination of a large volume of water samples.
基金supported by National Natural Science Foundation of China (grant NO. 21373252)
文摘We studied the solid-liquid transformation of low-grade solid potash deposit in Dalangtan Basin and simplified the liquid phase system.We did experiments to optimize conditions of the solid-liquid transformation.The Suitable
基金Project supported by the National Natural Science Foundation of China(Grant No.61176090)the National Science and Technology Project 02,China(Grant No.2013ZX02303-004)
文摘In this paper, two microwave irradiation methods:(i) liquid-phase microwave irradiation(MWI) reduction of graphite oxide suspension dissolved in de-ionized water and N, N-dimethylformamide, respectively, and(ii) solid-phase MWI reduction of graphite oxide powder have been successfully carried out to reduce graphite oxide. The reduced graphene oxide products are thoroughly characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectral analysis, Raman spectroscopy, UV-Vis absorption spectral analysis,and four-point probe conductivity measurements. The results show that both methods can efficiently remove the oxygencontaining functional groups attached to the graphite layers, though the solid-phase MWI reduction method can obtain far more efficiently a higher quality-reduced graphene oxide with fewer defects. The I(D)/I(G) ratio of the solid-phase MWI sample is as low as 0.46, which is only half of that of the liquid-phase MWI samples. The electrical conductivity of the reduced graphene oxide by the solid method reaches 747.9 S/m, which is about 25 times higher than that made by the liquid-phase method.
基金This research was supported by Special Research Fund for Young Doctors of Qiqihar Medical University(QMSI2020B-03,hosted by Wenjing Li).
文摘A low cost,rapid and sensitive preparation method of silica gel supported ionic liquid(SGSIL)combined with matrix solid phase dispersion(MSPD)followed by high performance liquid chromatography(HPLC)with ultraviolet detection(UV)is proposed,and it was applied to determine the seven active compounds in Salvia Miltiorrhiza herb.SGSIL and ionic liquid[BMIM]BF4 were used as the adsorbent and the green elution reagent in the MSPD procedure.Several extraction conditions including type of filler and elution solvent,the volume of elution solvent,material liquid ratio were optimized.Under the optimum conditions,the SGSIL-MSPD-HPLC method showed a low limit of detection(LOD,S/N=3)of 0.0122-0.8788μg/mL for standard solution,limit of quantification(LOQ,S/N=10)of 0.0406-2.9292μg/mL for standard solution,wide linear range from 1.56 to 2000μg/mL for all compounds for standard solution,correlation coefficients(r)of more than 0.9990,acceptable reproducibility(relative standard deviations,RSDs<3.54%),and precision of RSDs<3.36%for intra-day,RSDs<3.50%for inter-day.The satisfactory recoveries ranged from 96.4 to 102.5,with RSDs less than 3.45%.The developed SGSIL-MSPD method is easier and more suitable for the determination of the seven active compounds in Salvia Miltiorrhiza herb than the traditional ultrasonic extraction.It was an effective and efficient method for the extraction and quantification of the seven active compounds in traditional Chinese herbal samples.