Recently, a new radio millisecond pulsar(MSP) J1740-5340B, hosted in the globular cluster(GC) NGC 6397,was reported with a 5.78 ms spin period in an eclipsing binary system with a 1.97 days orbital period. Based on a ...Recently, a new radio millisecond pulsar(MSP) J1740-5340B, hosted in the globular cluster(GC) NGC 6397,was reported with a 5.78 ms spin period in an eclipsing binary system with a 1.97 days orbital period. Based on a modified radio ephemeris updated by tool tempo2, we analyze the ~15 yr γ-ray data obtained from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope and detect PSR J1740-5340B's γ-ray pulsation at a confidence level of ~4σ with a weighted H-test value of ~26. By performing a phase-resolved analysis, the γ-ray luminosity in on-pulse interval of PSR J1740-5340B is L_(γ)~ 3.8 × 10^(33) erg s^(-1) using NGC 6397's distance of 2.48 kpc. And γ-rays from the on-pulse part of PSR J1740-5340B contribute ~90% of the total observed γ-ray emissions from NGC 6397. No significant γ-ray pulsation of another MSP J1740-5340A in the GC is detected.Considering that the previous four cases of MSPs in GCs, more data in γ-ray, X-ray, and radio are encouraged to finally confirm the γ-ray emissions from MSP J1740-5340B, especially starving for a precise ephemeris.展开更多
Resonant cyclotron scattering (RCS) in pulsar magnetospheres is considered. The photon diffusion equation (Kompaneets equation) for RCS is derived. The photon system is modeled three dimensionally. Numerical calcu...Resonant cyclotron scattering (RCS) in pulsar magnetospheres is considered. The photon diffusion equation (Kompaneets equation) for RCS is derived. The photon system is modeled three dimensionally. Numerical calculations show that there exist not only up scattering but also down scattering of RCS, depending on the parameter space. RCS's possible applications to spectral energy distributions of magnetar candidates and radio quiet isolated neutron stars (INSs) are pointed out. The optical/UV excess of INSs may be caused by the down scattering of RCS. The calculations for RX J1856.5-3754 and RX J0720.4-3125 are presented and compared with their observational data. In our model, the INSs are proposed to be normal neutron stars, although the quark star hypothesis is still possible. The low pulsation amplitude of INSs is a natural consequence in the RCS model.展开更多
In this paper,we presented the 23.3 yr of pulsar timing results of PSR J1456-6413 based on the observations of Parkes 64 m radio telescope.We detected two new glitches at MJD 57093(3)and 59060(12)and confirmed its fir...In this paper,we presented the 23.3 yr of pulsar timing results of PSR J1456-6413 based on the observations of Parkes 64 m radio telescope.We detected two new glitches at MJD 57093(3)and 59060(12)and confirmed its first glitch at MJD 54554(10).The relative sizes(Δν/ν)of these two new glitches are 0.9×10^(-9)and 1.16×10^(-9),respectively.Using the“Cholesky”timing analysis method,we have determined its position,proper motion,and two-dimensional transverse velocities from the data segments before and after the second glitch,respectively.Furthermore,we detected exponential recovery behavior after the first glitch,with a recovery timescale of approximately 200 days and a corresponding exponential recovery factor Q of approximately 0.15(2),while no exponential recovery was detected for the other two glitches.More interestingly,we found that the leading component of the integral pulse profile after the second glitch became stronger,while the main component became weaker.Our results will expand the sample of pulsars with magnetosphere fluctuation triggered by the glitch event.展开更多
We report the radio observations of the eclipsing black widow pulsar J1720-0534, a 3.26 ms pulsar in orbit with a low mass companion of mass 0.029 to 0.034 M⊙. We obtain the phase-connected timing ephemeris and polar...We report the radio observations of the eclipsing black widow pulsar J1720-0534, a 3.26 ms pulsar in orbit with a low mass companion of mass 0.029 to 0.034 M⊙. We obtain the phase-connected timing ephemeris and polarization profile of this millisecond pulsar(MSP) using the Five-hundred-meter Aperture Spherical radio Telescope(FAST), the Green Bank Telescope(GBT), and the Parkes Telescope. For the first time from such a system, an oscillatory polarization angle change was observed from a particular eclipse egress with partial depolarization, indicating 10-milliGauss-level reciprocating magnetic fields oscillating in a length scale of 5 ×10^(3)km(assuming an orbital inclination angle of 90°) outside the companion's magnetosphere. The dispersion measure variation observed during the ingresses and egresses shows the rapid raising of the electron density in the shock boundary between the companion's magnetosphere and the surrounding pulsar wind. We suggest that the observed oscillatory magnetic fields originate from the pulsar wind outside the companion's magnetosphere.展开更多
Stimulated by the recent discovery of PSR J1833-1034 in SNR G21.5-0.9 and its age parameters presented by two groups of discovery, we demonstrate that the PSR J1833- 1034 was born 2053 years ago from a supernova explo...Stimulated by the recent discovery of PSR J1833-1034 in SNR G21.5-0.9 and its age parameters presented by two groups of discovery, we demonstrate that the PSR J1833- 1034 was born 2053 years ago from a supernova explosion, the BC 48 guest star observed in the Western Han (Early Han) Dynasty by ancient Chinese. Based on a detailed analysis of the Chinese ancient record of the BC 48 guest star and the new detected physical parameters of PSR J1833-1034, agreements on the visual position, age and distance between PSR J1833- 1034 and the BC 48 guest star are obtained. The initial period/90 of PSR J1833-1034 is now derived from its historical and current observed data without any other extra assumption on P0 itself, except that the factor PP is a constant in its evolution until now.展开更多
We analyzed the spectral properties and pulse profile of PSR J1811-1925,a pulsar located in the center of composite supernova remnant(SNR)G11.2-0.3,by using high timing resolution archival data from the Nuclear Spectr...We analyzed the spectral properties and pulse profile of PSR J1811-1925,a pulsar located in the center of composite supernova remnant(SNR)G11.2-0.3,by using high timing resolution archival data from the Nuclear Spectroscopic Telescope Array Mission(NuSTAR).Analysis of archival Chandra data over different regions rules out the SNR shell as the site of the hard X-ray emission while spectral analysis indicates that the NuSTAR photons originate in the pulsar and its nebula.The pulse profile exhibits a broad single peak up to 35 keV.The jointed spectrum by combining NuSTAR and Chandra can be well fitted by a power-law model with a photon index ofΓ=1.58±0.04.The integrated flux of jointed spectrum over 1-10 keV is 3.36×10^(-12)erg cm^(-2)s^(-1).The spectrum of pulsar having photon indexΓ=1.33±0.06 and a 1-10 keV flux of 0.91×10^(-12)erg cm^(-2)s^(-1).We also performed the phase-resolved spectral analysis by splitting the whole pulse-on phase into five phase bins.The photon indices of the bins are all around 1.4,indicating that the photon index does not evolve with the phase.展开更多
Hard X-rays above 10 keV are detected from several anomalous X-ray pul- sars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of e...Hard X-rays above 10 keV are detected from several anomalous X-ray pul- sars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J 170849-400910, 1E 1547.0- 5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Triimper et al., showing that the accretion scenario could be compatible with X- ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at -200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs.展开更多
The very small braking index of PSR J1734-3333, n = 0.9 ± 0.2, chal- lenges the current theories of braking mechanisms in pulsars. We present a possible interpretation that this pulsar is surrounded by a fall-hac...The very small braking index of PSR J1734-3333, n = 0.9 ± 0.2, chal- lenges the current theories of braking mechanisms in pulsars. We present a possible interpretation that this pulsar is surrounded by a fall-hack disk and braked by it. A modified braking torque is proposed based on the competition between the magnetic energy density of the pulsar and the kinetic energy density of the fall-back disk. With this torque, a self-similar disk can fit all the observed parameters of PSR J1734-3333 with natural initial values of parameters. In this regime, the star will evolve to the re- gion having anomalous X-ray pulsars and soft gamma repeaters in the P -/5 diagram in about 20 000 years and stay there for a very long time. The mass of the disk around PSR J1734-3333 in our model is about 10M similar to the observed mass of the disk around AXP 4U 0142+61.展开更多
Recently, the magnetar Swift J1834.9-0846 has been reported to have a possible wind nebula. It is shown that both the magnetar and its wind nebula are understandable in the wind braking scenario. The magnetar's rotat...Recently, the magnetar Swift J1834.9-0846 has been reported to have a possible wind nebula. It is shown that both the magnetar and its wind nebula are understandable in the wind braking scenario. The magnetar's rotational energy loss rate is not enough to power the particle luminosity. The required particle luminosity should be about 10^36 erg s^- 1 to 10^38 erg s^-1. It is obtained in three different approaches: considering wind braking of Swift J1834.9-0846; the spectral and spatial observations of the wind nebula; and an empirical upper bound on wind nebula X-ray luminosity. The nebula magnetic field is about 10-4 G. The possible wind nebula of Swift J1834.9-0846 should be a magnetar wind nebula. It is powered by the magnetic energy released from the magnetar.展开更多
X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing pro...X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.展开更多
Black widows(BWs)are millisecond pulsars ablating their companion stars.The out-flowing material from the companion can block the radio emission of the pulsar,resulting in eclipses.In this paper,we construct a model f...Black widows(BWs)are millisecond pulsars ablating their companion stars.The out-flowing material from the companion can block the radio emission of the pulsar,resulting in eclipses.In this paper,we construct a model for the radio eclipse by calculating the geometry of the bow shock between the winds of the pulsar and companion,where the shock shapes the eclipsing medium but had not been described in detail in previous works.The model is further used to explain the variations of the flux density and dispersion measure of three BW pulsars(i.e.,PSR B1957+20,J2055+3829,and J2051-0827)detected by the Five-hundred-meter Aperture Spherical radio Telescope.Consequently,we constrained the parameters of the three BW systems such as the inclination angles and true anomalies of the observer as well as the mass-loss rates and wind velocity of the companion stars.With the help of these constraints,it is expected that magnetic fields of companion stars and even masses of pulsars could further be determined as some extra observation can be achieved in the future.展开更多
PSR B0540-69 has a braking index measurement in its persistent state: n = 2.129± 0.012. Recently, it has been reported to have changes in its spin-down state: a sudden 36% increase in the spin- down rate. Combi...PSR B0540-69 has a braking index measurement in its persistent state: n = 2.129± 0.012. Recently, it has been reported to have changes in its spin-down state: a sudden 36% increase in the spin- down rate. Combining the persistent state braking index measurement with different spin-down states, PSR B0540-69 is more powerful than intermittent pulsars in constraining pulsar spin-down models. The pulsar wind model is applied to explain the variable timing behavior of PSR B0540-69. The braking index of PSR B0540-69 in its persistent state results from the combined effect of magnetic dipole radiation and particle wind. The particle density reflects the magnetospheric activity in real-time and may be responsible for the changing spin-down behavior. Corresponding to the 36% increase in the spin-down rate of PSR B0540-69, the relative increase in the particle density is 88% in the vacuum gap model. The braking index calculated with the model in the new state is n = 1.79. Future observations that measure the braking index of PSR B0540-69 in the new spin-down state will be very powerful in distinguishing between different pulsar spin-down models and different particle acceleration models in the wind braking scenario. The variable timing behavior of PSR J 1846-0258 is also understandable in the pulsar wind model.展开更多
The magnetar Swift J1834.9-0846 is observed using the Nanshan 25 m radio telescope. No pulsed radio emission is detected. The upper limit on the pulsed radio emission from this source is 0.5 mJy. According to the "fu...The magnetar Swift J1834.9-0846 is observed using the Nanshan 25 m radio telescope. No pulsed radio emission is detected. The upper limit on the pulsed radio emission from this source is 0.5 mJy. According to the "fundamental plane" for radio magnetars, this source should have radio emission. Therefore, our results put constraints on the existence of a fundamental plane of magnetar radio emission. We argue that a magnetar's ability to emit radio emission may have little to do with the spin down luminosity and is related to the magnetar's X-ray luminosity. The only necessary condition is a relatively low X-ray luminosity.展开更多
Long term observations by Brook et al. reveal that the derivative of rotational frequency of PSR J0738-4042 changed abruptly in 2005. Originally, the spin-down rate was relatively stable, with the rotational frequency...Long term observations by Brook et al. reveal that the derivative of rotational frequency of PSR J0738-4042 changed abruptly in 2005. Originally, the spin-down rate was relatively stable, with the rotational frequency derivative being - 1.14 x 10-14 s-2. After September 2005, the derivative began to rise. About 1000 days later, it arrived at another relatively stable value of about -0.98 x 10-24 s-2, indicating that the pulsar is spinning-down relatively slowly. To explain the observed change in spin-down rate, we resort to an asteroid disrupted by PSR J0738-4042. In our model, the orbital angular momentum of the asteroid is assumed to be parallel to that of the rotating pulsar, so that the pronounced reduction in the spin-down rate can be naturally explained as due to the transfer of angular momentum from the disrupted material to the central pulsar. The derived magnetospheric radius is about 7.0 x 109 cm, which is smaller than the tidal disruption radius (8.7 x 10^10cm). Our model is self-consistent. It is shown that the variability in the spin-down rate of PSR J0738-4042 can be quantitatively accounted for by accretion from the asteroid disrupted by the central pulsar.展开更多
SGR J1745-2900 is a magnetar near the Galactic center. X-ray observations of this source found a decreasing X-ray luminosity accompanied by an enhanced spindown rate. This negative correlation between X-ray luminosity...SGR J1745-2900 is a magnetar near the Galactic center. X-ray observations of this source found a decreasing X-ray luminosity accompanied by an enhanced spindown rate. This negative correlation between X-ray luminosity and spindown rate is hard to understand. The wind braking model of magnetars is employed to explain this puzzling spindown behavior. During the release of magnetic energy of magnetars, a system of particles may be generated. Some of these particles remain trapped in the magnetosphere and may contribute to the X-ray luminosity. The rest of the particles can flow out and take away the rotational energy of the central neutron star. A smaller polar cap angle will cause the decrease of X-ray luminosity and enhanced spindown rate of SGR J1745-2900. This magnetar is shortly expected to have a maximum spindown rate.展开更多
In this paper,the emissions from two pulsars,PSRs J1611-0114 and J1617+1123,were investigated using th Five-hundred-meter Aperture Spherical radio Telescope operating at a central frequency of 1250 MHz.Th average puls...In this paper,the emissions from two pulsars,PSRs J1611-0114 and J1617+1123,were investigated using th Five-hundred-meter Aperture Spherical radio Telescope operating at a central frequency of 1250 MHz.Th average pulse profile of PSR J1611-0114 shows two components,the first of which is relatively weak in intensity The two-dimensional pulse stack exhibits an obvious nulling phenomenon,with an estimated nulling fraction o40.1%±5.4%.The durations of the nulls and bursts are consistent with power-law distributions,and no periodi nulling phenomenon is found.The results from PSR J1617+1123 demonstrate that the average pulse profile i composed of four components.The peak intensity of the fourth component varies significantly,causing an unstabl integrated profile.In addition,the modulation characteristics of J1611-0114 and J1617+1123 were studied by analyzing the modulation index,longitude resolved fluctuation spectrum and two-dimensional fluctuation spectrum using the software PSRSALSA.It was found that the two pulsars exhibit intensity modulation.In particular,J1611-0114 displays even-odd modulation,with the modulation period of approximately two pulses.The modulation period of J1617+1123 is relatively broad.There is an obvious subpulse drift phenomenon,and the value of P_(2)i~0.125c/P_(0),corresponding to 12 pulse longitude bins,and the drift rate(P_(2)/P_(3))is about 0.29.展开更多
The acceleration of LMXB 4U 1820-30 derived from its orbital-period derivative P_(b)was supposed to be the evidence for an Intermediate-mass black hole(IMBH)in the Galactic globular cluster(GC)NGC 6624.However,we find...The acceleration of LMXB 4U 1820-30 derived from its orbital-period derivative P_(b)was supposed to be the evidence for an Intermediate-mass black hole(IMBH)in the Galactic globular cluster(GC)NGC 6624.However,we find that the anomalous P_(b)is mainly due to the gravitational wave emission,rather than the acceleration in cluster potential.Using the standard structure models of GCs,we simulate acceleration distributions for pulsars in the central region of the cluster.By fitting the acceleration of J1823-3021 A with the simulated distribution profiles(maximum values),it is suggested that an IMBH with mass M■950_(-350)^(+550)M_(⊙) may reside in the cluster center.We further show that the second period derivative P of J1823-3021 A is probably due to the gravitational perturbation of a nearby star.展开更多
We report a detailed study of polarization characteristics and subpulse drifting in PSR J1110-5637 with the observations of the Parkes 64 m radio telescope at 1369 MHz.The observations revealed that the trailing compo...We report a detailed study of polarization characteristics and subpulse drifting in PSR J1110-5637 with the observations of the Parkes 64 m radio telescope at 1369 MHz.The observations revealed that the trailing component of the pulse profile has obvious subpulse drifting,while the leading component has no subpulse drifting.Using the two-dimensional fluctuation spectrum(2DFS),we detected three distinct emission modes in the trailing component(modes A,B and C).The emission in mode A is chaotic and indistinguishable,while modes B and C have obvious subpulse drifting.The vertical modulation periods P3of modes B and C are around the mean values of 12 P and 8 P,respectively.The subpulse drifting of PSR J1110-5637 will expand the pulsar sample with multiple subpulse drifting rates,and this will help future systematic studies on the physical origin of the subpulse drifting phenomenon.展开更多
The radio telescope possesses high sensitivity and strong signal collection capabilities.While receiving celestial radiation signals,it also captures Radio Frequency Interferences(RFIs)introduced by human activities.R...The radio telescope possesses high sensitivity and strong signal collection capabilities.While receiving celestial radiation signals,it also captures Radio Frequency Interferences(RFIs)introduced by human activities.RFI,as signals originating from sources other than the astronomical targets,significantly impacts the quality of astronomical data.This paper presents an RFI fast mitigation algorithm based on block Least Mean Square(LMS)algorithm.It enhances the traditional adaptive LMS filter by grouping L adjacent time-sampled points into one block and applying the same filter coefficients for filtering within each block.This transformation reduces multiplication calculations and enhances algorithm efficiency by leveraging the time-domain convolution theorem.The algorithm is tested using baseband data from the Parkes 64 m radio telescope's pulsar observations and simulated data.The results confirm the algorithm's effectiveness,as the pulsar profile after RFI mitigation closely matches the original pulsar profile.展开更多
基金supported in part by the National Natural Science Foundation of China Nos. 12163006 and 12233006the Basic Research Program of Yunnan Province No. 202201AT070137+1 种基金the joint foundation of Department of Science and Technology of Yunnan Province and Yunnan University No. 202201BF070001-020support by the Xingdian Talent Support Plan-Youth Project。
文摘Recently, a new radio millisecond pulsar(MSP) J1740-5340B, hosted in the globular cluster(GC) NGC 6397,was reported with a 5.78 ms spin period in an eclipsing binary system with a 1.97 days orbital period. Based on a modified radio ephemeris updated by tool tempo2, we analyze the ~15 yr γ-ray data obtained from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope and detect PSR J1740-5340B's γ-ray pulsation at a confidence level of ~4σ with a weighted H-test value of ~26. By performing a phase-resolved analysis, the γ-ray luminosity in on-pulse interval of PSR J1740-5340B is L_(γ)~ 3.8 × 10^(33) erg s^(-1) using NGC 6397's distance of 2.48 kpc. And γ-rays from the on-pulse part of PSR J1740-5340B contribute ~90% of the total observed γ-ray emissions from NGC 6397. No significant γ-ray pulsation of another MSP J1740-5340A in the GC is detected.Considering that the previous four cases of MSPs in GCs, more data in γ-ray, X-ray, and radio are encouraged to finally confirm the γ-ray emissions from MSP J1740-5340B, especially starving for a precise ephemeris.
基金Supported by the National Natural Science Foundation of China
文摘Resonant cyclotron scattering (RCS) in pulsar magnetospheres is considered. The photon diffusion equation (Kompaneets equation) for RCS is derived. The photon system is modeled three dimensionally. Numerical calculations show that there exist not only up scattering but also down scattering of RCS, depending on the parameter space. RCS's possible applications to spectral energy distributions of magnetar candidates and radio quiet isolated neutron stars (INSs) are pointed out. The optical/UV excess of INSs may be caused by the down scattering of RCS. The calculations for RX J1856.5-3754 and RX J0720.4-3125 are presented and compared with their observational data. In our model, the INSs are proposed to be normal neutron stars, although the quark star hypothesis is still possible. The low pulsation amplitude of INSs is a natural consequence in the RCS model.
基金supported by the National SKA Program of China(Nos.2022SKA0130100,2020SKA0120100 and 2022SKA0130104)Guizhou Province Science and Technology Foundation(No.ZK[2022]304)+9 种基金the Major Science and Technology Program of Xinjiang Uygur Autonomous Region(Nos.2022A03013-2 and 2022A03013-4)the Scientific Research Project of the Guizhou Provincial Education(Nos.KY[2022]132,KY[2022]123 and KY[2022]137)the National Natural Science Foundation of China(Nos.11873080,U1731238,11565010,12103013,U1838109,U1831120,12273008 and 12103013)the Joint Research Fund in Astronomy under cooperative agreement between the National Natural Science Foundation of China and Chinese Academy of Sciences(No.U1931101)the Foundation of Guizhou Provincial Education Department(Nos.KY(2020)003 and KY(2021)303)the Guizhou Province Science and Technology Support Program(No.[2023]General 333)the 2021 project Xinjiang Uygur autonomous region of China for Tianshan elites,the Key Laboratory of Xinjiang Uygur Autonomous Region No.2020D04049the Academic New Seeding Fund Project of Guizhou Normal University(No.[2022]B18)the CAS Jianzhihua projectThe Parkes radio telescope is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO。
文摘In this paper,we presented the 23.3 yr of pulsar timing results of PSR J1456-6413 based on the observations of Parkes 64 m radio telescope.We detected two new glitches at MJD 57093(3)and 59060(12)and confirmed its first glitch at MJD 54554(10).The relative sizes(Δν/ν)of these two new glitches are 0.9×10^(-9)and 1.16×10^(-9),respectively.Using the“Cholesky”timing analysis method,we have determined its position,proper motion,and two-dimensional transverse velocities from the data segments before and after the second glitch,respectively.Furthermore,we detected exponential recovery behavior after the first glitch,with a recovery timescale of approximately 200 days and a corresponding exponential recovery factor Q of approximately 0.15(2),while no exponential recovery was detected for the other two glitches.More interestingly,we found that the leading component of the integral pulse profile after the second glitch became stronger,while the main component became weaker.Our results will expand the sample of pulsars with magnetosphere fluctuation triggered by the glitch event.
基金The Parkes Radio Telescope (Murriyang) is part of the Australia Telescope National Facility, which is funded by the Australian Government for operation as a National Facility managed by CSIROsupported by the National Natural Science Foundation of China (NSFC) grant Nos. 12041303, 12041304, 11873067, 12133004, 12203045, 12203070, 12203072, 12103013, U2031117 and T2241020+11 种基金the CAS-MPG LEGACY project and the National SKA Program of China No. 2020SKA0120200the Foundation of Science and Technology of Guizhou Province No. ((2021)023)the Foundation of Guizhou Provincial Education Department (No.KY(2021)303)the National Key Research and Development Program of China Nos. 2022YFC2205202 and 2022YFC2205203the Major Science and Technology Program of Xinjiang Uygur Autonomous Region Nos. 2022A03013-1, 2022A03013-3 and 2022A03013-4the National Key Research and Development Program of China No. 2022YFC2205203the 2021 project Xinjiang Uygur autonomous region of China for Tianshan elites and the Youth Innovation Promotion Association of CAS under No. 2023069support from the Youth Innovation Promotion Association CAS (id. 2021055)CAS Project for Young Scientists in Basic Research (grant YSBR-006)the Cultivation Project for FAST Scientific Payoff and Research Achievement of CAMS-CASsupport from Zhejiang Provincial Natural Science Foundation of China under grant No. LY23A030001supported by the NSF Physics Frontiers Center award number 2020265。
文摘We report the radio observations of the eclipsing black widow pulsar J1720-0534, a 3.26 ms pulsar in orbit with a low mass companion of mass 0.029 to 0.034 M⊙. We obtain the phase-connected timing ephemeris and polarization profile of this millisecond pulsar(MSP) using the Five-hundred-meter Aperture Spherical radio Telescope(FAST), the Green Bank Telescope(GBT), and the Parkes Telescope. For the first time from such a system, an oscillatory polarization angle change was observed from a particular eclipse egress with partial depolarization, indicating 10-milliGauss-level reciprocating magnetic fields oscillating in a length scale of 5 ×10^(3)km(assuming an orbital inclination angle of 90°) outside the companion's magnetosphere. The dispersion measure variation observed during the ingresses and egresses shows the rapid raising of the electron density in the shock boundary between the companion's magnetosphere and the surrounding pulsar wind. We suggest that the observed oscillatory magnetic fields originate from the pulsar wind outside the companion's magnetosphere.
基金Supported by the National Natural Science Foundation of China.
文摘Stimulated by the recent discovery of PSR J1833-1034 in SNR G21.5-0.9 and its age parameters presented by two groups of discovery, we demonstrate that the PSR J1833- 1034 was born 2053 years ago from a supernova explosion, the BC 48 guest star observed in the Western Han (Early Han) Dynasty by ancient Chinese. Based on a detailed analysis of the Chinese ancient record of the BC 48 guest star and the new detected physical parameters of PSR J1833-1034, agreements on the visual position, age and distance between PSR J1833- 1034 and the BC 48 guest star are obtained. The initial period/90 of PSR J1833-1034 is now derived from its historical and current observed data without any other extra assumption on P0 itself, except that the factor PP is a constant in its evolution until now.
基金supported by the National Natural Science Foundation of China(NSFC,grant No.U1838203)International Partnership Program of Chinese Academy of Sciences(grant No.113111KYSB20190020)。
文摘We analyzed the spectral properties and pulse profile of PSR J1811-1925,a pulsar located in the center of composite supernova remnant(SNR)G11.2-0.3,by using high timing resolution archival data from the Nuclear Spectroscopic Telescope Array Mission(NuSTAR).Analysis of archival Chandra data over different regions rules out the SNR shell as the site of the hard X-ray emission while spectral analysis indicates that the NuSTAR photons originate in the pulsar and its nebula.The pulse profile exhibits a broad single peak up to 35 keV.The jointed spectrum by combining NuSTAR and Chandra can be well fitted by a power-law model with a photon index ofΓ=1.58±0.04.The integrated flux of jointed spectrum over 1-10 keV is 3.36×10^(-12)erg cm^(-2)s^(-1).The spectrum of pulsar having photon indexΓ=1.33±0.06 and a 1-10 keV flux of 0.91×10^(-12)erg cm^(-2)s^(-1).We also performed the phase-resolved spectral analysis by splitting the whole pulse-on phase into five phase bins.The photon indices of the bins are all around 1.4,indicating that the photon index does not evolve with the phase.
基金Supported by the National Natural Science Foundation of China
文摘Hard X-rays above 10 keV are detected from several anomalous X-ray pul- sars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J 170849-400910, 1E 1547.0- 5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Triimper et al., showing that the accretion scenario could be compatible with X- ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at -200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs.
基金Supported by the National Natural Science Foundation of China
文摘The very small braking index of PSR J1734-3333, n = 0.9 ± 0.2, chal- lenges the current theories of braking mechanisms in pulsars. We present a possible interpretation that this pulsar is surrounded by a fall-hack disk and braked by it. A modified braking torque is proposed based on the competition between the magnetic energy density of the pulsar and the kinetic energy density of the fall-back disk. With this torque, a self-similar disk can fit all the observed parameters of PSR J1734-3333 with natural initial values of parameters. In this regime, the star will evolve to the re- gion having anomalous X-ray pulsars and soft gamma repeaters in the P -/5 diagram in about 20 000 years and stay there for a very long time. The mass of the disk around PSR J1734-3333 in our model is about 10M similar to the observed mass of the disk around AXP 4U 0142+61.
基金supported by the West Light Foundation of CAS (LHXZ 201201)973 Program (2015CB857100)
文摘Recently, the magnetar Swift J1834.9-0846 has been reported to have a possible wind nebula. It is shown that both the magnetar and its wind nebula are understandable in the wind braking scenario. The magnetar's rotational energy loss rate is not enough to power the particle luminosity. The required particle luminosity should be about 10^36 erg s^- 1 to 10^38 erg s^-1. It is obtained in three different approaches: considering wind braking of Swift J1834.9-0846; the spectral and spatial observations of the wind nebula; and an empirical upper bound on wind nebula X-ray luminosity. The nebula magnetic field is about 10-4 G. The possible wind nebula of Swift J1834.9-0846 should be a magnetar wind nebula. It is powered by the magnetic energy released from the magnetar.
基金supported by the National Natural Science Foundation of China (NSFC, GrantNos. 10935001 and 10973002)the National Basic Research Program of China (973 Program, Grant No. 2009CB824800)the John Templeton Foundation
文摘X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.
基金supported by the National SKA program of China(2020SKA0120300)the National Key R&D Program of China(2021YFA0718500)+2 种基金the National Natural Science Foundation of China(grant Nos.11833003,12033001)the China Postdoctoral Science Foundation(No.2023T160410)the Opening Foundation of Xinjiang Key Laboratory(No.2021D04016)。
文摘Black widows(BWs)are millisecond pulsars ablating their companion stars.The out-flowing material from the companion can block the radio emission of the pulsar,resulting in eclipses.In this paper,we construct a model for the radio eclipse by calculating the geometry of the bow shock between the winds of the pulsar and companion,where the shock shapes the eclipsing medium but had not been described in detail in previous works.The model is further used to explain the variations of the flux density and dispersion measure of three BW pulsars(i.e.,PSR B1957+20,J2055+3829,and J2051-0827)detected by the Five-hundred-meter Aperture Spherical radio Telescope.Consequently,we constrained the parameters of the three BW systems such as the inclination angles and true anomalies of the observer as well as the mass-loss rates and wind velocity of the companion stars.With the help of these constraints,it is expected that magnetic fields of companion stars and even masses of pulsars could further be determined as some extra observation can be achieved in the future.
基金supported by the West Light Foundation of CAS(LHXZ 201201)the 973 Program(2015CB857100)Qing Cu Hui of CAS
文摘PSR B0540-69 has a braking index measurement in its persistent state: n = 2.129± 0.012. Recently, it has been reported to have changes in its spin-down state: a sudden 36% increase in the spin- down rate. Combining the persistent state braking index measurement with different spin-down states, PSR B0540-69 is more powerful than intermittent pulsars in constraining pulsar spin-down models. The pulsar wind model is applied to explain the variable timing behavior of PSR B0540-69. The braking index of PSR B0540-69 in its persistent state results from the combined effect of magnetic dipole radiation and particle wind. The particle density reflects the magnetospheric activity in real-time and may be responsible for the changing spin-down behavior. Corresponding to the 36% increase in the spin-down rate of PSR B0540-69, the relative increase in the particle density is 88% in the vacuum gap model. The braking index calculated with the model in the new state is n = 1.79. Future observations that measure the braking index of PSR B0540-69 in the new spin-down state will be very powerful in distinguishing between different pulsar spin-down models and different particle acceleration models in the wind braking scenario. The variable timing behavior of PSR J 1846-0258 is also understandable in the pulsar wind model.
基金supported by the Natural Science Foundation of Xinjiang (No.2009211B35)the National Natural Science Foundation of China(Grant Nos.11103021,11173041 and 10903019)+1 种基金the West Light Foundation of CAS (XBBS 201021 and LHXZ 201201)Xinjiang Bairen project and Youth Innovation Promotion Association,CAS
文摘The magnetar Swift J1834.9-0846 is observed using the Nanshan 25 m radio telescope. No pulsed radio emission is detected. The upper limit on the pulsed radio emission from this source is 0.5 mJy. According to the "fundamental plane" for radio magnetars, this source should have radio emission. Therefore, our results put constraints on the existence of a fundamental plane of magnetar radio emission. We argue that a magnetar's ability to emit radio emission may have little to do with the spin down luminosity and is related to the magnetar's X-ray luminosity. The only necessary condition is a relatively low X-ray luminosity.
基金supported by the National Basic Research Program of China(973 Program,Grant No.2014CB845800)by the National Natural Science Foundation of China(Grant No.11473012)
文摘Long term observations by Brook et al. reveal that the derivative of rotational frequency of PSR J0738-4042 changed abruptly in 2005. Originally, the spin-down rate was relatively stable, with the rotational frequency derivative being - 1.14 x 10-14 s-2. After September 2005, the derivative began to rise. About 1000 days later, it arrived at another relatively stable value of about -0.98 x 10-24 s-2, indicating that the pulsar is spinning-down relatively slowly. To explain the observed change in spin-down rate, we resort to an asteroid disrupted by PSR J0738-4042. In our model, the orbital angular momentum of the asteroid is assumed to be parallel to that of the rotating pulsar, so that the pronounced reduction in the spin-down rate can be naturally explained as due to the transfer of angular momentum from the disrupted material to the central pulsar. The derived magnetospheric radius is about 7.0 x 109 cm, which is smaller than the tidal disruption radius (8.7 x 10^10cm). Our model is self-consistent. It is shown that the variability in the spin-down rate of PSR J0738-4042 can be quantitatively accounted for by accretion from the asteroid disrupted by the central pulsar.
基金supported by the Xinjiang Bairen projectthe National Natural Science Foundation of China (NSFC, 11103021)+2 种基金West Light Foundation of CAS (LHXZ201201)Youth Innovation Promotion Association of CASthe National Basic Research Program of China (973 Program, 2015CB857100)
文摘SGR J1745-2900 is a magnetar near the Galactic center. X-ray observations of this source found a decreasing X-ray luminosity accompanied by an enhanced spindown rate. This negative correlation between X-ray luminosity and spindown rate is hard to understand. The wind braking model of magnetars is employed to explain this puzzling spindown behavior. During the release of magnetic energy of magnetars, a system of particles may be generated. Some of these particles remain trapped in the magnetosphere and may contribute to the X-ray luminosity. The rest of the particles can flow out and take away the rotational energy of the central neutron star. A smaller polar cap angle will cause the decrease of X-ray luminosity and enhanced spindown rate of SGR J1745-2900. This magnetar is shortly expected to have a maximum spindown rate.
基金supported by National Key Research and Development Program of China(2022YFC2205203)the Major Science and Technology Program of Xinjiang Uygur Autonomous Region(No.2022A03013-1)+9 种基金the National Natural Science Foundation of China(NSFC,grant Nos.U1838109 and 12041304)supported by the Major Science and Technology Program of Xinjiang Uygur Autonomous Region(No.2022A03013-1)National Natural Science Foundation of China(NSFC,Grant No.12303053)the 2021 project Xinjiang Uygur autonomous region of China for Tianshan elites,the Youth Innovation Promotion Association of CAS under No.2023069the Tianshan Talent Training Program(No.2023TSYCCX0100)supported by the National SKA Program of China(grant No.2020SKA0120200)the National Natural Science Foundation of China(NSFC,grant Nos.12041303,12273100 and12288102)the National Key R&D Program of China(grant No.2022YFC2205201)the West Light Foundation of the Chinese Academy of Sciences(grant No.WLFC 2021-XBQNXZ-027)the Major Science and Technology Program of Xinjiang Uygur Autonomous Region(grant No.2022A03013-4)。
文摘In this paper,the emissions from two pulsars,PSRs J1611-0114 and J1617+1123,were investigated using th Five-hundred-meter Aperture Spherical radio Telescope operating at a central frequency of 1250 MHz.Th average pulse profile of PSR J1611-0114 shows two components,the first of which is relatively weak in intensity The two-dimensional pulse stack exhibits an obvious nulling phenomenon,with an estimated nulling fraction o40.1%±5.4%.The durations of the nulls and bursts are consistent with power-law distributions,and no periodi nulling phenomenon is found.The results from PSR J1617+1123 demonstrate that the average pulse profile i composed of four components.The peak intensity of the fourth component varies significantly,causing an unstabl integrated profile.In addition,the modulation characteristics of J1611-0114 and J1617+1123 were studied by analyzing the modulation index,longitude resolved fluctuation spectrum and two-dimensional fluctuation spectrum using the software PSRSALSA.It was found that the two pulsars exhibit intensity modulation.In particular,J1611-0114 displays even-odd modulation,with the modulation period of approximately two pulses.The modulation period of J1617+1123 is relatively broad.There is an obvious subpulse drift phenomenon,and the value of P_(2)i~0.125c/P_(0),corresponding to 12 pulse longitude bins,and the drift rate(P_(2)/P_(3))is about 0.29.
基金supported by the National Natural Science Foundation of China under Grant Nos.11803009 and 11603009the Natural Science Foundation of Fujian Province under Grant Nos.2018J05006,2018J01416 and 2016J05013。
文摘The acceleration of LMXB 4U 1820-30 derived from its orbital-period derivative P_(b)was supposed to be the evidence for an Intermediate-mass black hole(IMBH)in the Galactic globular cluster(GC)NGC 6624.However,we find that the anomalous P_(b)is mainly due to the gravitational wave emission,rather than the acceleration in cluster potential.Using the standard structure models of GCs,we simulate acceleration distributions for pulsars in the central region of the cluster.By fitting the acceleration of J1823-3021 A with the simulated distribution profiles(maximum values),it is suggested that an IMBH with mass M■950_(-350)^(+550)M_(⊙) may reside in the cluster center.We further show that the second period derivative P of J1823-3021 A is probably due to the gravitational perturbation of a nearby star.
基金supported by Guizhou Province Science and Technology Foundation(No.ZK[2022]304)the National Natural Science Foundation of China(Nos.U1731238,11565010,12103013 and U1831120)+1 种基金the Foundation of Guizhou Provincial Education Department(No.KY(2020)003 and KY(2021)303)The Parkes radio telescope is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO。
文摘We report a detailed study of polarization characteristics and subpulse drifting in PSR J1110-5637 with the observations of the Parkes 64 m radio telescope at 1369 MHz.The observations revealed that the trailing component of the pulse profile has obvious subpulse drifting,while the leading component has no subpulse drifting.Using the two-dimensional fluctuation spectrum(2DFS),we detected three distinct emission modes in the trailing component(modes A,B and C).The emission in mode A is chaotic and indistinguishable,while modes B and C have obvious subpulse drifting.The vertical modulation periods P3of modes B and C are around the mean values of 12 P and 8 P,respectively.The subpulse drifting of PSR J1110-5637 will expand the pulsar sample with multiple subpulse drifting rates,and this will help future systematic studies on the physical origin of the subpulse drifting phenomenon.
基金supported by the National Key R&D Program of China(Nos.2021YFC2203502 and 2022YFF0711502)the National Natural Science Foundation of China(NSFC)(12173077 and 12073067)+7 种基金the Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region(2022D14020)the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(grant No.PTYQ2022YZZD01)China National Astronomical Data Center(NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)Natural Science Foundation of Xinjiang Uygur AutonomousRegion(2022D01A360)the CAS“Light of West China”program under No.2022-XBQNXZ-012supported by Astronomical Big Data Joint Research Center,cofounded by National Astronomical Observatories,Chinese Academy of Sciences。
文摘The radio telescope possesses high sensitivity and strong signal collection capabilities.While receiving celestial radiation signals,it also captures Radio Frequency Interferences(RFIs)introduced by human activities.RFI,as signals originating from sources other than the astronomical targets,significantly impacts the quality of astronomical data.This paper presents an RFI fast mitigation algorithm based on block Least Mean Square(LMS)algorithm.It enhances the traditional adaptive LMS filter by grouping L adjacent time-sampled points into one block and applying the same filter coefficients for filtering within each block.This transformation reduces multiplication calculations and enhances algorithm efficiency by leveraging the time-domain convolution theorem.The algorithm is tested using baseband data from the Parkes 64 m radio telescope's pulsar observations and simulated data.The results confirm the algorithm's effectiveness,as the pulsar profile after RFI mitigation closely matches the original pulsar profile.