The origin of intermediate helium (He)-rich hot subdwarfs is still unclear.Previous studies have suggested that some surviving Type Ia supernovae (SNe Ia) companions from the white dwarf+main-sequence (WD+MS)channel m...The origin of intermediate helium (He)-rich hot subdwarfs is still unclear.Previous studies have suggested that some surviving Type Ia supernovae (SNe Ia) companions from the white dwarf+main-sequence (WD+MS)channel may contribute to the intermediate He-rich hot subdwarfs.However,previous studies ignored the impact of atomic diffusion on the post-explosion evolution of surviving companion stars of SNe Ia,leading to the aspect that they could not explain the observed surface He abundance of intermediate He-rich hot subdwarfs.In this work,by taking the atomic diffusion and stellar wind into account,we trace the surviving companions of SNe Ia from the WD+MS channel using the one-dimensional stellar evolution code MESA until they evolve into hot subdwarfs.We find that the surface He-abundances of our surviving companion models during their core He-burning phases are in a range of-1■log(N_(He) N_(H))■0,which are consistent with those observed in intermediate He-rich hot subdwarfs.This seems to further support the notion that it is possible for surviving companions of SNe Ia in the WD+MS channel to form some intermediate He-rich hot subdwarfs.展开更多
The Multi-channel Photometric Survey Telescope(Mephisto)is a real-time,three-color photometric system designed to capture the color evolution of stars and transients accurately.This telescope system can be crucial in ...The Multi-channel Photometric Survey Telescope(Mephisto)is a real-time,three-color photometric system designed to capture the color evolution of stars and transients accurately.This telescope system can be crucial in cosmological distance measurements of low-redshift(low-z,z■0.1)Type Ia supernovae(SNe Ia).To optimize the capabilities of this instrument,we perform a comprehensive simulation study before its official operation is scheduled to start.By considering the impact of atmospheric extinction,weather conditions,and the lunar phase at the observing site involving the instrumental features,we simulate light curves of SNe Ia obtained by Mephisto.The best strategy in the case of SN Ia cosmology is to take the image at an exposure time of 130 s with a cadence of 3 days.In this condition,Mephisto can obtain hundreds of high-quality SNe Ia to achieve a distance measurement better than 4.5%.Given the on-time spectral classification and monitoring of the Lijiang 2.4 m Telescope at the same observatory,Mephisto,in the whole operation,can significantly enrich the well-calibrated sample of supernovae at low-z and improve the calibration accuracy of high-z SNe Ia.展开更多
Can pulsar-like compact objects release further huge free energy besides the kinematic energy of rotation?This is actually relevant to the equation of state of cold supra-nuclear matter,which is still under hot debate...Can pulsar-like compact objects release further huge free energy besides the kinematic energy of rotation?This is actually relevant to the equation of state of cold supra-nuclear matter,which is still under hot debate.Enormous energy is surely needed to understand various observations,such asγ-ray bursts,fast radio bursts and softγ-ray repeaters.In this paper,the elastic/gravitational free energy of solid strangeon stars is revisited for strangeon stars,with two anisotropic models to calculate in general relativity.It is found that huge free energy(>10^(46)erg)could be released via starquakes,given an extremely small anisotropy((p_(t)-p_(r))/p_(r)~10^(-4),with pt/pr the tangential/radial pressure),implying that pulsar-like stars could have great potential of free energy release without extremely strong magnetic fields in the solid strangeon star model.展开更多
I further study the manner by which a pair of opposite jets shape the“keyhole”morphological structure of the core-collapse supernova(CCSN)SN 1997A,now the CCSN remnant(CCSNR)1987A.By doing so,I strengthen the claim ...I further study the manner by which a pair of opposite jets shape the“keyhole”morphological structure of the core-collapse supernova(CCSN)SN 1997A,now the CCSN remnant(CCSNR)1987A.By doing so,I strengthen the claim that the jittering-jet explosion mechanism accounts for most,likely all,CCSNe.The“keyhole”structure comprises a northern low-intensity zone closed with a bright rim on its front and an elongated low-intensity nozzle in the south.This rim-nozzle asymmetry is observed in some cooling flow clusters and planetary nebulae that are observed to be shaped by jets.I build a toy model that uses the planar jittering jets pattern,where consecutive pairs of jets tend to jitter in a common plane,implying that the accreted gas onto the newly born neutron star at the late explosion phase flows perpendicular to that plane.This allows for a long-lived jet-launching episode.This long-lasting jet-launching episode launches more mass into the jets that can inflate larger pairs of ears or bubbles,forming the main jets'axis of the CCSNR that is not necessarily related to a possible pre-collapse core rotation.I discuss the relation of the main jets'axis to the neutron star's natal kick velocity.展开更多
We present optical spectra of 10 Galactic Wolf-Rayet(WR)stars that consist of five WN and five WC stars.The optical observation was conducted using a low-resolution spectrograph NEO-R1000(λ/Δλ~1000)at GAO-ITB RTS(2...We present optical spectra of 10 Galactic Wolf-Rayet(WR)stars that consist of five WN and five WC stars.The optical observation was conducted using a low-resolution spectrograph NEO-R1000(λ/Δλ~1000)at GAO-ITB RTS(27.94 cm,F/10.0),Bosscha Observatory,Lembang.We implemented stellar atmosphere Postdam Wolf-Rayet(PoWR)grid modeling to derive stellar parameters.The normalized optical spectrum can be used to find the best model from the available PoWR grid,then we could derive stellar temperature and transformation radius.To derive luminosity,stellar radius and color excess,we conducted a Spectral Energy Distribution(SED)analysis with additional data on the near-ultraviolet spectrum from the International Ultraviolet Explorer(IUE)database,and UBV and 2MASS JHK broadband filter data.Additional analysis to derive asymptotic terminal wind velocity was conducted from the P-Cygni profile analysis of the high-resolution IUE ultraviolet spectrum.With previously derived parameters,we could determine the mass loss rate of the WR stars.Furthermore,we compared our results with previous work that used PoWR code and the differences are not more than 20%.We conclude that the PoWR spectral grid is sufficient to derive WR stellar parameters quickly and could provide more accurate initial parameter input to the PoWR program code.展开更多
Strangeon stars,which are proposed to describe the nature of pulsar-like compact stars,have passed various observational tests.The maximum mass of a non-rotating strangeon star could be high,which implies that the rem...Strangeon stars,which are proposed to describe the nature of pulsar-like compact stars,have passed various observational tests.The maximum mass of a non-rotating strangeon star could be high,which implies that the remnants of binary strangeon star mergers could even be long-lived massive strangeon stars.We study rigidly rotating strangeon stars in the slowly rotating approximation,using the Lennard-Jones model for the equation of state.Rotation can significantly increase the maximum mass of strangeon stars with unchanged baryon numbers,enlarging the mass-range of long-lived strangeon stars.During spin-down after merger,the decrease of radius of the remnant will lead to the release of gravitational energy.Taking into account the efficiency of converting the gravitational energy luminosity to the observed X-ray luminosity,we find that the gravitational energy could provide an alternative energy source for the plateau emission of X-ray afterglow.The fitting results of X-ray plateau emission of some short gamma-ray bursts suggest that the magnetic dipole field strength of the remnants can be much smaller than that of expected when the plateau emission is powered only by spin-down luminosity of magnetars.展开更多
Using 9943 OB-type stars from LAMOST DR7 in the solar neighborhood,we fit the vertical stellar density profile with the model including a single exponential distribution at different positions(R,Φ).The distributions ...Using 9943 OB-type stars from LAMOST DR7 in the solar neighborhood,we fit the vertical stellar density profile with the model including a single exponential distribution at different positions(R,Φ).The distributions of the scale heights and scale length show that the young disk traced by the OB-type stars is not axisymmetric.The scale length decreases versus the azimuthal angleΦ,i.e.,from.■kpc withΦ=-3°to■kpc withΦ=9°.Meanwhile we find signal of non-symmetry in the distribution of the scale height of the north and south of the disk plane.The scale height in the north side shows signal of flaring of the disk,while that of the south disk stays almost constant around h_(s)=130 pc.The distribution of the displaceeent of the disk plane Z_(0)also shows variance versus the azimuthal angleΦ,which displays significant differences with the warp model constrained by the Cepheid stars.We also test different values for the position of the Sun,and the distance between the Sun and the Galactic center affects the scale heights and the displacement of the disk significantly,but that does not change our conclusion that the disk is not axisymmetric.展开更多
During the long term evolution of globular clusters(GCs), some member stars are lost to the field. The recently found nitrogen-rich(N-rich) metal-poor field stars are promising candidates of these GC escapees, since N...During the long term evolution of globular clusters(GCs), some member stars are lost to the field. The recently found nitrogen-rich(N-rich) metal-poor field stars are promising candidates of these GC escapees, since N enhancement is the fingerprint of chemically enhanced populations in GCs. In this work, we discuss the possibility of identifying N-rich metal-poor field stars with the upcoming Chinese Space Station Telescope(CSST). We focus on the main survey camera with NUV, u, g, r, i, z, y filters and slitless spectrograph with a resolution about 200.The combination of UV sensitive equipment and prominent N-related molecular lines in the UV band bodes well for the identification: the color–color diagram of(u-g) versus(g-r) is capable of separating N-rich field stars from normal halo stars, if metallicity can be estimated without using the information on u-band photometry.Besides, the synthetic spectra show that a signal-to-noise ratio of 10 is sufficient to identify N-rich field stars. In the near future, a large sample of N-rich field stars found by CSST, combined with state-of-the-art N-body simulations will be crucial to deciphering GC-Galaxy co-evolution.展开更多
We present radial velocity(RV)curve templates of RR Lyrae first-overtone(RRc)stars constructed with the Mg I b triplet and Hαlines using time-domain Medium-Resolution Survey spectra of seven RRc stars from Large Sky ...We present radial velocity(RV)curve templates of RR Lyrae first-overtone(RRc)stars constructed with the Mg I b triplet and Hαlines using time-domain Medium-Resolution Survey spectra of seven RRc stars from Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST)Data Release 9.Additionally,we derive the relation between the stellar RV curve amplitudes and g-band light curve amplitudes from Zwicky Transient Facility(ZTF)public survey.For those RRc stars without ZTF g-band light curves,we provide the conversions from the light curve amplitudes in ZTF r-and i-bands,Gaia G-band,and V-band from the All-Sky Automated Survey for Supernovae to those in ZTF g-band.We validate our RV curve templates using the RRc star SV Scl and find the uncertainties of systemic RV are less than 2.11 km s~(-1)and 6.08 km s~(-1)based on the Mg I b triplet and Hαlines,respectively.We calculate the systemic RVs of 30 RRc stars using the RV curve templates constructed with the Mg I b triplet and Hαlines and find the systemic RVs are comparable with each other.This RV curve template will be particularly useful for obtaining the systemic RV of RRc using the LAMOST spectroscopy.展开更多
The Gaia DR3 parallax approach was used to estimate the absolute parameters of 2375δScuti stars from the ASAS catalog.The selected stars have a variety of observational characteristics,with a higher than 80%probabili...The Gaia DR3 parallax approach was used to estimate the absolute parameters of 2375δScuti stars from the ASAS catalog.The selected stars have a variety of observational characteristics,with a higher than 80%probability of beingδScuti stars.We have displayed all the stars in the Hertzsprung-Russell diagram along with theδScuti instability strip,the Zero Age Main Sequence and the Terminal Age Main Sequence.Then,we determined which fundamental and overtone modes each star belongs to using pulsation constant(Q)calculations.In addition,we evaluated the parameters in the Q calculation equation using three machine learning methods,which showed that surface gravity and temperature have the greatest effect on its calculation.The Period-Luminosity(P-L)relationship of theδScuti stars was also revisited.Eventually,using least squares linear regression,we made four linear fits for fundamental and overtone modes and updated their relationships.展开更多
Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merg...Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merger dynamics that bridge these two sets of observables remain enigmatic.This includes if,and when,the post-merger remnant star collapses to a black hole,and what are the necessary conditions to power a short gamma-ray burst,and other observed electromagnetic counterparts.Our focus is on the detection of gravitational wave(GW)emissions from hyper-massive neutron stars(NSs)formed through binary neutron star(BNS)mergers.Utilizing several kilohertz GW detectors,we simulate BNS mergers within the detection limits of LIGO-Virgo-KARGA O4.Our objective is to ascertain the fraction of simulated sources that may emit detectable post-merger GW signals.For kilohertz detectors equipped with a new cavity design,we estimate that approximately 1.1%-32%of sources would emit a detectable post-merger GW signal.This fraction is contingent on the mass converted into gravitational wave energy,ranging from 0.01M_(sun)to 0.1M_(sun).Furthermore,by evaluating other well-regarded proposed kilohertz GW detectors,we anticipate that the fraction can increase to as much as 2.1%-61%under optimal performance conditions.展开更多
Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter lea...Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic.展开更多
Open clusters are the basic building blocks that serve as a laboratory for the study of young stellar populations in the Milky Way.Variable stars in open clusters provide a unique way to accurately probe the internal ...Open clusters are the basic building blocks that serve as a laboratory for the study of young stellar populations in the Milky Way.Variable stars in open clusters provide a unique way to accurately probe the internal structure,temporal and dynamical evolutionary stages of individual stars and the host cluster.The most powerful tool for such studies is time-domain photometric observations.This paper follows the route of our previous work,concentrating on a photometric search for variable stars in NGC 884.The target cluster is the companion of NGC869,forming the well-known double cluster system that is gravitationally bound.From the observation run in 2016 November,a total of 9247 B-band CCD images and 8218Ⅴ-band CCD images were obtained.We detected a total of 15 stars with variability in visual brightness,including five Be stars,three eclipsing binaries,and seven of unknown types.Two new variable stars were discovered in this work.We also compared the variable star content of NGC 884 with its companion NGC 869.展开更多
A concept of ensemble averaged stellar reactors is developed to study the dynamics of processes occurring in stars, allocated in the ~200 pc solar neighborhood. According to the effective temperature value, four stell...A concept of ensemble averaged stellar reactors is developed to study the dynamics of processes occurring in stars, allocated in the ~200 pc solar neighborhood. According to the effective temperature value, four stellar classes are identified, for which the correlation coefficients and standard deviation are counted. The theory of the buoyancy terrestial elements is generalized to stellar systems. It was suggested that stars are over-heated due to the shift parameters of the nuclear processes occurring inside the stars, which leads to the synthesis of transuranium elements until the achievement of a critical nuclear mass and star explosion. The heavy transuranium elements sink downward and are concentrated in the stellar depth layers. The physical explanation of the existence of the critical Chandrasekhar star limit has been offered. Based on the spatial analysis of overheated stars, it was suggested that the withdrawal of the stellar reactor from the equilibrium state is a consequence of extragalactic compression inside the galaxy arm due to the arm spirality (not to be confused with the spirality of the galaxy itself).展开更多
We study the properties of dense matter at finite temperature with various proton fractions for use in supernova simulations. The relativistic mean-field theory is used to describe homogeneous nuclear matter, while th...We study the properties of dense matter at finite temperature with various proton fractions for use in supernova simulations. The relativistic mean-field theory is used to describe homogeneous nuclear matter, while the Thomas-Fermi approximation is adopted to describe inhomogeneous matter. We also discuss the equation of state of neutron star matter at zero temperature in a wide density range. The equation of state at high densities can be significantly softened by the inclusion of hyperons.展开更多
We report on a pilot study on identifying metal-poor stars pre-enriched by Pair-Instability Supernovae(PISNe).Very massive,first generation(Population Ⅲ) stars(140 M⊙≤M≤260 M⊙)end their lives as PISNe,which...We report on a pilot study on identifying metal-poor stars pre-enriched by Pair-Instability Supernovae(PISNe).Very massive,first generation(Population Ⅲ) stars(140 M⊙≤M≤260 M⊙)end their lives as PISNe,which have been predicted by theories,but no relics of PISNe have been observed yet.Among the distinct characteristics of the yields of PISNe,as predicted by theoretical calculations,are a strong odd-even effect,and a strong overabundance of Ca with respect to iron and the solar ratio.We use the latter characteristic to identify metal-poor stars in the Galactic halo that have been pre-enriched by PISNe,by comparing metallicites derived from strong, co-added Fe lines detected in low-resolution(i.e.,R=λ/△λ~2000)spectra of the Sloan Digital Sky Survey(SDSS),with metallicities determined by the SDSS Stellar Parameters Pipeline(SSPP).The latter are based on the strength of the CaⅡ K line and assumptions on the Ca/Fe abundance ratio.Stars are selected as candidates if their metallicity derived from Fe lines is significantly lower than the SSPP metallicities.In a sample of 12 300 stars for which SDSS spectroscopy is available,we have identified 18 candidate stars.Higher resolution and signal-to-noise ratio spectra of these candidates are being obtained with the Very Large Telescope of the European Southern Observatory and the XSHOOTER spectrograph,to determine their abundance patterns,and to verify our selection method.We plan to apply our method to the database of several million stellar spectra to be acquired with the Guo Shou Jing Telescope (LAMOST)in the next five years.展开更多
As one of the most useful cosmological distance indicators,type Ia supernovae(SNe Ia)play an important role in the study of cosmology.However,the progenitors of SNe Ia are still uncertain.It has been suggested that ca...As one of the most useful cosmological distance indicators,type Ia supernovae(SNe Ia)play an important role in the study of cosmology.However,the progenitors of SNe Ia are still uncertain.It has been suggested that carbonoxygen white dwarf(CO WD)+He subgiant systems could produce SNe Ia through the double-degenerate(DD)model,in which the He subgiant transfers He-rich matter to the primary CO WD and finally evolves to another CO WD.Recently,a CO WD+He star system(i.e.,HD 265435)has been discovered to be a new SNe Ia progenitor candidate based on the DD model.The orbital period of the system is about 0.0688 days,and the masses of the CO WD and the He star are 1.01±0.15 M_(⊙) and 0.63_(-0.12)^(+0.13)M_(⊙),respectively.In this work,we evolve a large number of primordial binaries to the formation of CO WD+He star systems and investigate the evolutionary history of HD265435.We find that HD 265435 may originate from a primordial binary that has a 5.18 M_(⊙) primary and a3.66 M_(⊙) secondary with an initial orbital period of 5200 days.The CO WD+He star system would be formed after the primordial binary experiences two common-envelope ejection processes.We also find that HD 265435 would evolve to a double WD system with a total mass of 1.58 M⊙after a stable mass-transfer process,and the double WD system would merge driven by gravitational wave radiation.We estimate that it would take about 76 Myr for HD 265435 to form an SN Ia.In addition,HD 265435 would be a potential target of space-based gravitational wave observatories(e.g.,LISA,Taiji and TianQin).展开更多
TypeⅠa supernovae(SNe Ia)are among the most energetic events in the universe.They are excellent cosmological distance indicators due to the remarkable homogeneity of their light curves.However,the nature of the proge...TypeⅠa supernovae(SNe Ia)are among the most energetic events in the universe.They are excellent cosmological distance indicators due to the remarkable homogeneity of their light curves.However,the nature of the progenitors of SNeⅠa is still not well understood.In the single-degenerate model,a carbon-oxygen white dwarf(CO WD)could grow its mass by accreting material from an asymptotic giant branch(AGB)star,leading to the formation of SNe Ia when the mass of the WD approaches to the Chandrasekhar-mass limit,known as the AGB donor channel.In this channel,previous studies mainly concentrate on the wind-accretion pathway for the mass-increase of the WDs.In the present work,we employed an integrated mass-transfer prescription for the semidetached WD+AGB systems,and evolved a number of WD+AGB systems for the formation of SNe Ia through the Roche-lobe overflow process or the wind-accretion process.We provided the initial and final parameter spaces of WD+AGB systems for producing SNe Ia.We also obtained the density distribution of circumstellar matter at the moment when the WD mass reaches the Chandrasekhar-mass limit.Moreover,we found that the massive WD+AGB sample AT 2019qyl can be covered by the final parameter space for producing SNe Ia,indicating that AT 2019qyl is a strong progenitor candidate of SNe Ia with AGB donors.展开更多
In this paper,we study five luminous supernovae(LSNe)Ibc(SN 2009ca,ASASSN-15mj,SN 2019omd,SN 2002ued,and SN 2021bmf)whose peak absolute magnitudes M_(peakare)≈-19.5 to-21 mag by fitting their multi-band light curves(...In this paper,we study five luminous supernovae(LSNe)Ibc(SN 2009ca,ASASSN-15mj,SN 2019omd,SN 2002ued,and SN 2021bmf)whose peak absolute magnitudes M_(peakare)≈-19.5 to-21 mag by fitting their multi-band light curves(LCs)with different energy source models.We find that SN 2009ca might be powered by the^(56)Ni model since the required^(56)Ni mass(0.56 M_(⊙))is comparable to those of energetic SNe Ic,while the rest four SNe cannot be accounted for the^(56)Ni model since their derived^(56)Ni masses are(?)1 M_(⊙)or the ratios of the^(56)Ni mass to the ejecta mass are larger than 0.2.This indicates that some LSNe might be powered by^(56)Ni decay,while most of them need additional energy sources.We then use the magnetar plus^(56)Ni model and the fallback plus^(56)Ni model to fit the LCs of the four LSNe that cannot be explained by the^(56)Ni model,finding that the two models can account for the four SNe,and the derived parameters are comparable to those of LSNe or superluminous SNe in the literature,if they were(mainly)powered by magnetars or fallback.We suggest that the magnetar plus^(56)Ni model is more reasonable than the fallback plus^(56)Ni model,since the validity of the fallback plus^(56)Ni model depends on the value of accretion efficiency(η)and favors a largeηvalue,and the magnetar plus^(56)Ni model yields smallerχ^(2)/dof values.It should be pointed out that,however,the fallback plus^(56)Ni model is still a promising model that can account for the four SNe in our sample as well as other LSNe.展开更多
We have collected a catalog of 1095 debris disks with properties and classification(resolved,planet,gas)information.From the catalog,we defined a less biased sample with 612 objects and presented the distributions of ...We have collected a catalog of 1095 debris disks with properties and classification(resolved,planet,gas)information.From the catalog,we defined a less biased sample with 612 objects and presented the distributions of their stellar and disk properties to search for correlations between disks and stars.We found debris disks were widely distributed from B to M-type stars while planets were mostly found around solar-type stars,gases were easier to detect around early-type stars and resolved disks were mostly distributed from A to G-type stars.The fractional luminosity dropped off with stellar age and planets were mostly found around old stars while gas-detected disks were much younger.The dust temperature of both one-belt systems and cold components in two-belt systems increased with distance while decreasing with stellar age.In addition,we defined a less biased planet sample with 211 stars with debris disks but no planets and 35 stars with debris disks and planets and found the stars with debris disks and planets had higher metallicities than stars with debris disks but no planets.Among the 35 stars with debris disks and planets,we found the stars with disks and cool Jupiters were widely distributed with age from 10 Myr to 10 Gyr and metallicity from-1.56 to 0.28 while the other three groups tended to be old(>4Gyr)and metal-rich(>-0.3).In addition,the eccentricities of cool Jupiters are distributed from 0 to 0.932,wider than the other three types of planets(<0.3).展开更多
基金supported by the National Natural Science Foundation of China(NSFC.Grant Nos.12288102 and 12333008)the National Key R&D Program of China(No.2021YFA1600403)+5 种基金support from the Yunnan Ten Thousand Talents Plan-Young&Elite Talents Projectthe CAS“Light of West China”Programsupport from International Centre of Supernovae,Yunnan Key Laboratory(No.202302AN360001)the Yunnan Revitalization Talent Support Program-Science&Technology Champion Project(NO.202305AB350003)Yunnan Fundamental Research Projects(NOs.202401BC070007,202201BC070003)the science research grants from the China Manned Space Project。
文摘The origin of intermediate helium (He)-rich hot subdwarfs is still unclear.Previous studies have suggested that some surviving Type Ia supernovae (SNe Ia) companions from the white dwarf+main-sequence (WD+MS)channel may contribute to the intermediate He-rich hot subdwarfs.However,previous studies ignored the impact of atomic diffusion on the post-explosion evolution of surviving companion stars of SNe Ia,leading to the aspect that they could not explain the observed surface He abundance of intermediate He-rich hot subdwarfs.In this work,by taking the atomic diffusion and stellar wind into account,we trace the surviving companions of SNe Ia from the WD+MS channel using the one-dimensional stellar evolution code MESA until they evolve into hot subdwarfs.We find that the surface He-abundances of our surviving companion models during their core He-burning phases are in a range of-1■log(N_(He) N_(H))■0,which are consistent with those observed in intermediate He-rich hot subdwarfs.This seems to further support the notion that it is possible for surviving companions of SNe Ia in the WD+MS channel to form some intermediate He-rich hot subdwarfs.
基金supported by the National Key R&D Program of China(2021YFA1600404)the National Natural Science Foundation of China(NSFC,grant No.12173082)+11 种基金science research grants from the China Manned Space Project(CMS-CSST-2021-A12)the Yunnan Province Foundation(202201AT070069)the Top-notch Young Talents Program of Yunnan Provincethe Light of West China Program provided by the Chinese Academy of Sciencesthe International Centre of Supernovae,Yunnan Key Laboratory(202302AN360001)Funding for the LJT has been provided by the CAS and the People’s Government of Yunnan Provincefunded by the“Yunnan University Development Plan for World-Class University”“Yunnan University Development Plan for World-Class Astronomy Discipline”obtained supports from the“Science&Technology Champion Project”(202005AB160002)from two“Team Projects”—the“Innovation Team”(202105AE160021)the“Top Team”(202305AT350002)funded by the“Yunnan Revitalization Talent Support Program.”。
文摘The Multi-channel Photometric Survey Telescope(Mephisto)is a real-time,three-color photometric system designed to capture the color evolution of stars and transients accurately.This telescope system can be crucial in cosmological distance measurements of low-redshift(low-z,z■0.1)Type Ia supernovae(SNe Ia).To optimize the capabilities of this instrument,we perform a comprehensive simulation study before its official operation is scheduled to start.By considering the impact of atmospheric extinction,weather conditions,and the lunar phase at the observing site involving the instrumental features,we simulate light curves of SNe Ia obtained by Mephisto.The best strategy in the case of SN Ia cosmology is to take the image at an exposure time of 130 s with a cadence of 3 days.In this condition,Mephisto can obtain hundreds of high-quality SNe Ia to achieve a distance measurement better than 4.5%.Given the on-time spectral classification and monitoring of the Lijiang 2.4 m Telescope at the same observatory,Mephisto,in the whole operation,can significantly enrich the well-calibrated sample of supernovae at low-z and improve the calibration accuracy of high-z SNe Ia.
基金supported by the National SKA Program of China(2020SKA0120100)supported by NSFC grant No.12203017。
文摘Can pulsar-like compact objects release further huge free energy besides the kinematic energy of rotation?This is actually relevant to the equation of state of cold supra-nuclear matter,which is still under hot debate.Enormous energy is surely needed to understand various observations,such asγ-ray bursts,fast radio bursts and softγ-ray repeaters.In this paper,the elastic/gravitational free energy of solid strangeon stars is revisited for strangeon stars,with two anisotropic models to calculate in general relativity.It is found that huge free energy(>10^(46)erg)could be released via starquakes,given an extremely small anisotropy((p_(t)-p_(r))/p_(r)~10^(-4),with pt/pr the tangential/radial pressure),implying that pulsar-like stars could have great potential of free energy release without extremely strong magnetic fields in the solid strangeon star model.
文摘I further study the manner by which a pair of opposite jets shape the“keyhole”morphological structure of the core-collapse supernova(CCSN)SN 1997A,now the CCSN remnant(CCSNR)1987A.By doing so,I strengthen the claim that the jittering-jet explosion mechanism accounts for most,likely all,CCSNe.The“keyhole”structure comprises a northern low-intensity zone closed with a bright rim on its front and an elongated low-intensity nozzle in the south.This rim-nozzle asymmetry is observed in some cooling flow clusters and planetary nebulae that are observed to be shaped by jets.I build a toy model that uses the planar jittering jets pattern,where consecutive pairs of jets tend to jitter in a common plane,implying that the accreted gas onto the newly born neutron star at the late explosion phase flows perpendicular to that plane.This allows for a long-lived jet-launching episode.This long-lasting jet-launching episode launches more mass into the jets that can inflate larger pairs of ears or bubbles,forming the main jets'axis of the CCSNR that is not necessarily related to a possible pre-collapse core rotation.I discuss the relation of the main jets'axis to the neutron star's natal kick velocity.
基金supported through HLM’s Program Penelitian Pengabdian Masyarakat ITB(P2MI)Astronomy Division,FMIPA ITB grant 2022-2023Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contracts。
文摘We present optical spectra of 10 Galactic Wolf-Rayet(WR)stars that consist of five WN and five WC stars.The optical observation was conducted using a low-resolution spectrograph NEO-R1000(λ/Δλ~1000)at GAO-ITB RTS(27.94 cm,F/10.0),Bosscha Observatory,Lembang.We implemented stellar atmosphere Postdam Wolf-Rayet(PoWR)grid modeling to derive stellar parameters.The normalized optical spectrum can be used to find the best model from the available PoWR grid,then we could derive stellar temperature and transformation radius.To derive luminosity,stellar radius and color excess,we conducted a Spectral Energy Distribution(SED)analysis with additional data on the near-ultraviolet spectrum from the International Ultraviolet Explorer(IUE)database,and UBV and 2MASS JHK broadband filter data.Additional analysis to derive asymptotic terminal wind velocity was conducted from the P-Cygni profile analysis of the high-resolution IUE ultraviolet spectrum.With previously derived parameters,we could determine the mass loss rate of the WR stars.Furthermore,we compared our results with previous work that used PoWR code and the differences are not more than 20%.We conclude that the PoWR spectral grid is sufficient to derive WR stellar parameters quickly and could provide more accurate initial parameter input to the PoWR program code.
基金supported by the National SKA Program of China(Nos.2020SKA0120300,2020SKA0120100)the Outstanding Young and Middle-aged Science and Technology Innovation Teams from Hubei colleges and universities(No.T2021026)the Young Top-notch Talent Cultivation Program of Hubei Province,and the Key Laboratory Opening Fund(MOE)of China(grant No.QLPL2021P01)。
文摘Strangeon stars,which are proposed to describe the nature of pulsar-like compact stars,have passed various observational tests.The maximum mass of a non-rotating strangeon star could be high,which implies that the remnants of binary strangeon star mergers could even be long-lived massive strangeon stars.We study rigidly rotating strangeon stars in the slowly rotating approximation,using the Lennard-Jones model for the equation of state.Rotation can significantly increase the maximum mass of strangeon stars with unchanged baryon numbers,enlarging the mass-range of long-lived strangeon stars.During spin-down after merger,the decrease of radius of the remnant will lead to the release of gravitational energy.Taking into account the efficiency of converting the gravitational energy luminosity to the observed X-ray luminosity,we find that the gravitational energy could provide an alternative energy source for the plateau emission of X-ray afterglow.The fitting results of X-ray plateau emission of some short gamma-ray bursts suggest that the magnetic dipole field strength of the remnants can be much smaller than that of expected when the plateau emission is powered only by spin-down luminosity of magnetars.
基金supported by the National Natural Science Foundation of China(NSFC,grant Nos.12173013,12103062,12003045,and 11903012)the National Key Basic R&D Program of China via 2019YFA0405500+2 种基金supported by the Natural Science Foundation of Hebei Province under grant A2021205006 and A2019205166by the project of the Hebei provincial department of science and technology under grant number 226Z7604Gthe science research grants from the China Manned Space Project。
文摘Using 9943 OB-type stars from LAMOST DR7 in the solar neighborhood,we fit the vertical stellar density profile with the model including a single exponential distribution at different positions(R,Φ).The distributions of the scale heights and scale length show that the young disk traced by the OB-type stars is not axisymmetric.The scale length decreases versus the azimuthal angleΦ,i.e.,from.■kpc withΦ=-3°to■kpc withΦ=9°.Meanwhile we find signal of non-symmetry in the distribution of the scale height of the north and south of the disk plane.The scale height in the north side shows signal of flaring of the disk,while that of the south disk stays almost constant around h_(s)=130 pc.The distribution of the displaceeent of the disk plane Z_(0)also shows variance versus the azimuthal angleΦ,which displays significant differences with the warp model constrained by the Cepheid stars.We also test different values for the position of the Sun,and the distance between the Sun and the Galactic center affects the scale heights and the displacement of the disk significantly,but that does not change our conclusion that the disk is not axisymmetric.
基金support from the China Manned Space Project Nos. CMS-CSST-2021-B03,CMS-CSST-2021-A08, and________the National Natural Science Foundation of China under grant No. 12233013,12073090+8 种基金the Natural Science Foundation of Guangdong Province under grant No. 2022A1515010732grant support provided by Proyecto Fondecyt Iniciación No. 11220340ANID Concurso de Fomento a la Vinculación Internacional para Instituciones de Investigación Regionales (Modalidad corta duración) Proyecto No. FOVI210020Joint Committee ESO-Government of Chile 2021 (ORP 023/2021)Becas Santander Movilidad Internacional Profesores 2022, Banco Santander Chilesupport from the National Natural Science Foundation of China through grant 21BAA00619the one-hundred-talent project of Sun Yat-sen Universitythe Fundamental Research Funds for the Central UniversitiesSun Yat-sen University (22hytd09)。
文摘During the long term evolution of globular clusters(GCs), some member stars are lost to the field. The recently found nitrogen-rich(N-rich) metal-poor field stars are promising candidates of these GC escapees, since N enhancement is the fingerprint of chemically enhanced populations in GCs. In this work, we discuss the possibility of identifying N-rich metal-poor field stars with the upcoming Chinese Space Station Telescope(CSST). We focus on the main survey camera with NUV, u, g, r, i, z, y filters and slitless spectrograph with a resolution about 200.The combination of UV sensitive equipment and prominent N-related molecular lines in the UV band bodes well for the identification: the color–color diagram of(u-g) versus(g-r) is capable of separating N-rich field stars from normal halo stars, if metallicity can be estimated without using the information on u-band photometry.Besides, the synthetic spectra show that a signal-to-noise ratio of 10 is sufficient to identify N-rich field stars. In the near future, a large sample of N-rich field stars found by CSST, combined with state-of-the-art N-body simulations will be crucial to deciphering GC-Galaxy co-evolution.
基金supported by the National Key Research and Development Program of China(2023YFA1608100)the National Natural Science Foundation of China(NSFC,grant Nos.12090044,11833006 and 12303023)+3 种基金the science research grants from the China Manned Space Project including the CSST Milky Way and Nearby Galaxies Survey on Dust and Extinction Project CMS-CSST-2021-A09 and No.CMS-CSST-2021-A08.G.C.LHubei Provincial Natural Science Foundation with grant No.2023AFB577the Key Laboratory Fund of Ministry of Education under grant No.QLPL2022P01National Natural Science Foundation of China(NSFC,Grant No.U1731108)。
文摘We present radial velocity(RV)curve templates of RR Lyrae first-overtone(RRc)stars constructed with the Mg I b triplet and Hαlines using time-domain Medium-Resolution Survey spectra of seven RRc stars from Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST)Data Release 9.Additionally,we derive the relation between the stellar RV curve amplitudes and g-band light curve amplitudes from Zwicky Transient Facility(ZTF)public survey.For those RRc stars without ZTF g-band light curves,we provide the conversions from the light curve amplitudes in ZTF r-and i-bands,Gaia G-band,and V-band from the All-Sky Automated Survey for Supernovae to those in ZTF g-band.We validate our RV curve templates using the RRc star SV Scl and find the uncertainties of systemic RV are less than 2.11 km s~(-1)and 6.08 km s~(-1)based on the Mg I b triplet and Hαlines,respectively.We calculate the systemic RVs of 30 RRc stars using the RV curve templates constructed with the Mg I b triplet and Hαlines and find the systemic RVs are comparable with each other.This RV curve template will be particularly useful for obtaining the systemic RV of RRc using the LAMOST spectroscopy.
文摘The Gaia DR3 parallax approach was used to estimate the absolute parameters of 2375δScuti stars from the ASAS catalog.The selected stars have a variety of observational characteristics,with a higher than 80%probability of beingδScuti stars.We have displayed all the stars in the Hertzsprung-Russell diagram along with theδScuti instability strip,the Zero Age Main Sequence and the Terminal Age Main Sequence.Then,we determined which fundamental and overtone modes each star belongs to using pulsation constant(Q)calculations.In addition,we evaluated the parameters in the Q calculation equation using three machine learning methods,which showed that surface gravity and temperature have the greatest effect on its calculation.The Period-Luminosity(P-L)relationship of theδScuti stars was also revisited.Eventually,using least squares linear regression,we made four linear fits for fundamental and overtone modes and updated their relationships.
基金supported by the National Natural Science Foundation of China (Grant Nos.12021003,11920101003,and 11633001)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDB23000000)。
文摘Gravitational waves emanating from binary neutron star inspirals,alongside electromagnetic transients resulting from the aftermath of the GW170817 merger,have been successfully detected.However,the intricate post-merger dynamics that bridge these two sets of observables remain enigmatic.This includes if,and when,the post-merger remnant star collapses to a black hole,and what are the necessary conditions to power a short gamma-ray burst,and other observed electromagnetic counterparts.Our focus is on the detection of gravitational wave(GW)emissions from hyper-massive neutron stars(NSs)formed through binary neutron star(BNS)mergers.Utilizing several kilohertz GW detectors,we simulate BNS mergers within the detection limits of LIGO-Virgo-KARGA O4.Our objective is to ascertain the fraction of simulated sources that may emit detectable post-merger GW signals.For kilohertz detectors equipped with a new cavity design,we estimate that approximately 1.1%-32%of sources would emit a detectable post-merger GW signal.This fraction is contingent on the mass converted into gravitational wave energy,ranging from 0.01M_(sun)to 0.1M_(sun).Furthermore,by evaluating other well-regarded proposed kilohertz GW detectors,we anticipate that the fraction can increase to as much as 2.1%-61%under optimal performance conditions.
文摘Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic.
基金the National Natural Science Foundation of China(NSFC)through grants 12003022,12373035,12233009 and 12173047support from the Youth Innovation Promotion Association of the CAS(grant No.2022055)。
文摘Open clusters are the basic building blocks that serve as a laboratory for the study of young stellar populations in the Milky Way.Variable stars in open clusters provide a unique way to accurately probe the internal structure,temporal and dynamical evolutionary stages of individual stars and the host cluster.The most powerful tool for such studies is time-domain photometric observations.This paper follows the route of our previous work,concentrating on a photometric search for variable stars in NGC 884.The target cluster is the companion of NGC869,forming the well-known double cluster system that is gravitationally bound.From the observation run in 2016 November,a total of 9247 B-band CCD images and 8218Ⅴ-band CCD images were obtained.We detected a total of 15 stars with variability in visual brightness,including five Be stars,three eclipsing binaries,and seven of unknown types.Two new variable stars were discovered in this work.We also compared the variable star content of NGC 884 with its companion NGC 869.
文摘A concept of ensemble averaged stellar reactors is developed to study the dynamics of processes occurring in stars, allocated in the ~200 pc solar neighborhood. According to the effective temperature value, four stellar classes are identified, for which the correlation coefficients and standard deviation are counted. The theory of the buoyancy terrestial elements is generalized to stellar systems. It was suggested that stars are over-heated due to the shift parameters of the nuclear processes occurring inside the stars, which leads to the synthesis of transuranium elements until the achievement of a critical nuclear mass and star explosion. The heavy transuranium elements sink downward and are concentrated in the stellar depth layers. The physical explanation of the existence of the critical Chandrasekhar star limit has been offered. Based on the spatial analysis of overheated stars, it was suggested that the withdrawal of the stellar reactor from the equilibrium state is a consequence of extragalactic compression inside the galaxy arm due to the arm spirality (not to be confused with the spirality of the galaxy itself).
基金supported by National Natural Science Foundation of China(Nos.10675064,11075082)
文摘We study the properties of dense matter at finite temperature with various proton fractions for use in supernova simulations. The relativistic mean-field theory is used to describe homogeneous nuclear matter, while the Thomas-Fermi approximation is adopted to describe inhomogeneous matter. We also discuss the equation of state of neutron star matter at zero temperature in a wide density range. The equation of state at high densities can be significantly softened by the inclusion of hyperons.
基金J.R.and N.C.acknowledge financial support by the Global Networks program of Universitt Heidelbergby Deutsche Forschungsgemeinschaft through grant CH 214/5-1+3 种基金Sonderforschungsbereich SFB 881"The Milky Way System"(subproject A4)J.Ren and G.Zhao acknowledge the support by the National Natural Science Foundation of China(Grant Nos.11233004 and 11243004)J.Ren acknowledges partial financial support from the Shandong University Fund for Graduate Study AbroadFunding for the SDSS and SDSS-II has been provided by the Alfred P.Sloan Foundation,the Participating Institutions,the National Science Foundation,the U.S.Department of Energy,the National Aeronautics and Space Administration,the Japanese Monbukagakusho,the Max Planck Society,and the Higher Education Funding Council for England
文摘We report on a pilot study on identifying metal-poor stars pre-enriched by Pair-Instability Supernovae(PISNe).Very massive,first generation(Population Ⅲ) stars(140 M⊙≤M≤260 M⊙)end their lives as PISNe,which have been predicted by theories,but no relics of PISNe have been observed yet.Among the distinct characteristics of the yields of PISNe,as predicted by theoretical calculations,are a strong odd-even effect,and a strong overabundance of Ca with respect to iron and the solar ratio.We use the latter characteristic to identify metal-poor stars in the Galactic halo that have been pre-enriched by PISNe,by comparing metallicites derived from strong, co-added Fe lines detected in low-resolution(i.e.,R=λ/△λ~2000)spectra of the Sloan Digital Sky Survey(SDSS),with metallicities determined by the SDSS Stellar Parameters Pipeline(SSPP).The latter are based on the strength of the CaⅡ K line and assumptions on the Ca/Fe abundance ratio.Stars are selected as candidates if their metallicity derived from Fe lines is significantly lower than the SSPP metallicities.In a sample of 12 300 stars for which SDSS spectroscopy is available,we have identified 18 candidate stars.Higher resolution and signal-to-noise ratio spectra of these candidates are being obtained with the Very Large Telescope of the European Southern Observatory and the XSHOOTER spectrograph,to determine their abundance patterns,and to verify our selection method.We plan to apply our method to the database of several million stellar spectra to be acquired with the Guo Shou Jing Telescope (LAMOST)in the next five years.
基金supported by the National Key R&D Program of China(Nos.2021YFA1600404 and 2021YFA1600403)the National Natural Science Foundation of China(Nos.12225304 and 12273105)+3 种基金the Western Light Project of CAS(No.XBZG-ZDSYS-202117)the science research grants from the China Manned Space Project(Nos.CMS-CSST-2021-A12/B07)the Youth Innovation Promotion Association CAS(No.2021058)the Yunnan Fundamental Research Projects(Nos.202001AS070029,202001AU070054,202101AT070027 and 202101AW070047)。
文摘As one of the most useful cosmological distance indicators,type Ia supernovae(SNe Ia)play an important role in the study of cosmology.However,the progenitors of SNe Ia are still uncertain.It has been suggested that carbonoxygen white dwarf(CO WD)+He subgiant systems could produce SNe Ia through the double-degenerate(DD)model,in which the He subgiant transfers He-rich matter to the primary CO WD and finally evolves to another CO WD.Recently,a CO WD+He star system(i.e.,HD 265435)has been discovered to be a new SNe Ia progenitor candidate based on the DD model.The orbital period of the system is about 0.0688 days,and the masses of the CO WD and the He star are 1.01±0.15 M_(⊙) and 0.63_(-0.12)^(+0.13)M_(⊙),respectively.In this work,we evolve a large number of primordial binaries to the formation of CO WD+He star systems and investigate the evolutionary history of HD265435.We find that HD 265435 may originate from a primordial binary that has a 5.18 M_(⊙) primary and a3.66 M_(⊙) secondary with an initial orbital period of 5200 days.The CO WD+He star system would be formed after the primordial binary experiences two common-envelope ejection processes.We also find that HD 265435 would evolve to a double WD system with a total mass of 1.58 M⊙after a stable mass-transfer process,and the double WD system would merge driven by gravitational wave radiation.We estimate that it would take about 76 Myr for HD 265435 to form an SN Ia.In addition,HD 265435 would be a potential target of space-based gravitational wave observatories(e.g.,LISA,Taiji and TianQin).
基金supported by the National Natural Science Foundation of China(Nos.12225304,12273105 and 11903075)the National Key R&D Program of China(Nos.2021YFA1600404,2021YFA1600403 and 2021YFA1600400)+5 种基金the Western Light Project of CAS(No.XBZG-ZDSYS-202117)the science research grants from the China Manned Space Project(No.CMS-CSST-2021-A12)the Youth Innovation Promotion Association CAS(No.2021058)the Yunnan Fundamental Research Projects(Nos.202001AS070029,202001AU070054,202101AT070027,202101AW070047 and 202201BC070003)the Frontier Scientific Research Program of Deep Space Exploration Laboratory(No.2022-QYKYJH-ZYTS-016)International Centre of Supernovae,Yunnan Key Laboratory(No.202302AN360001)。
文摘TypeⅠa supernovae(SNe Ia)are among the most energetic events in the universe.They are excellent cosmological distance indicators due to the remarkable homogeneity of their light curves.However,the nature of the progenitors of SNeⅠa is still not well understood.In the single-degenerate model,a carbon-oxygen white dwarf(CO WD)could grow its mass by accreting material from an asymptotic giant branch(AGB)star,leading to the formation of SNe Ia when the mass of the WD approaches to the Chandrasekhar-mass limit,known as the AGB donor channel.In this channel,previous studies mainly concentrate on the wind-accretion pathway for the mass-increase of the WDs.In the present work,we employed an integrated mass-transfer prescription for the semidetached WD+AGB systems,and evolved a number of WD+AGB systems for the formation of SNe Ia through the Roche-lobe overflow process or the wind-accretion process.We provided the initial and final parameter spaces of WD+AGB systems for producing SNe Ia.We also obtained the density distribution of circumstellar matter at the moment when the WD mass reaches the Chandrasekhar-mass limit.Moreover,we found that the massive WD+AGB sample AT 2019qyl can be covered by the final parameter space for producing SNe Ia,indicating that AT 2019qyl is a strong progenitor candidate of SNe Ia with AGB donors.
基金supported by the National Natural Science Foundation of China(grant Nos.11963001,12133003,11833003,11973020(C0035736),U1938201)。
文摘In this paper,we study five luminous supernovae(LSNe)Ibc(SN 2009ca,ASASSN-15mj,SN 2019omd,SN 2002ued,and SN 2021bmf)whose peak absolute magnitudes M_(peakare)≈-19.5 to-21 mag by fitting their multi-band light curves(LCs)with different energy source models.We find that SN 2009ca might be powered by the^(56)Ni model since the required^(56)Ni mass(0.56 M_(⊙))is comparable to those of energetic SNe Ic,while the rest four SNe cannot be accounted for the^(56)Ni model since their derived^(56)Ni masses are(?)1 M_(⊙)or the ratios of the^(56)Ni mass to the ejecta mass are larger than 0.2.This indicates that some LSNe might be powered by^(56)Ni decay,while most of them need additional energy sources.We then use the magnetar plus^(56)Ni model and the fallback plus^(56)Ni model to fit the LCs of the four LSNe that cannot be explained by the^(56)Ni model,finding that the two models can account for the four SNe,and the derived parameters are comparable to those of LSNe or superluminous SNe in the literature,if they were(mainly)powered by magnetars or fallback.We suggest that the magnetar plus^(56)Ni model is more reasonable than the fallback plus^(56)Ni model,since the validity of the fallback plus^(56)Ni model depends on the value of accretion efficiency(η)and favors a largeηvalue,and the magnetar plus^(56)Ni model yields smallerχ^(2)/dof values.It should be pointed out that,however,the fallback plus^(56)Ni model is still a promising model that can account for the four SNe in our sample as well as other LSNe.
基金supported in part by the National Natural Science Foundation of China(NSFC,Nos.U1631109,11703093 and U2031120)supported in part by the Special Natural Science Fund of Guizhou University(Grant No.201911A)the First-class Physics Promotion Programme(2019)of Guizhou University。
文摘We have collected a catalog of 1095 debris disks with properties and classification(resolved,planet,gas)information.From the catalog,we defined a less biased sample with 612 objects and presented the distributions of their stellar and disk properties to search for correlations between disks and stars.We found debris disks were widely distributed from B to M-type stars while planets were mostly found around solar-type stars,gases were easier to detect around early-type stars and resolved disks were mostly distributed from A to G-type stars.The fractional luminosity dropped off with stellar age and planets were mostly found around old stars while gas-detected disks were much younger.The dust temperature of both one-belt systems and cold components in two-belt systems increased with distance while decreasing with stellar age.In addition,we defined a less biased planet sample with 211 stars with debris disks but no planets and 35 stars with debris disks and planets and found the stars with debris disks and planets had higher metallicities than stars with debris disks but no planets.Among the 35 stars with debris disks and planets,we found the stars with disks and cool Jupiters were widely distributed with age from 10 Myr to 10 Gyr and metallicity from-1.56 to 0.28 while the other three groups tended to be old(>4Gyr)and metal-rich(>-0.3).In addition,the eccentricities of cool Jupiters are distributed from 0 to 0.932,wider than the other three types of planets(<0.3).