Ion-pairing high-performance liquid chromatography-ultraviolet (HPLC-UV) methods were developed to determine two commonly used chelating agents, ethylenediaminetetraacetic acid (EDTA) in Abilify (a small molecule...Ion-pairing high-performance liquid chromatography-ultraviolet (HPLC-UV) methods were developed to determine two commonly used chelating agents, ethylenediaminetetraacetic acid (EDTA) in Abilify (a small molecule drug with aripiprazole as the active pharmaceutical ingredient) oral solution and die- thylenetriaminepentaacetic acid (DTPA) in Yervoy (a monoclonal antibody drug with ipilimumab as the active pharmaceutical ingredient) intravenous formulation. Since the analytes, EDTA and DTPA, do not contain chromophores, transition metal ions (Cu2+, Fe3+) which generate highly stable metallocom- plexes with the chelating agents were added into the sample preparation to enhance UV detection. The use of metallocomplexes with ion-pairing chromatography provides the ability to achieve the desired sensitivity and selectivity in the development of the method. Specifically, the sample preparation in- volving metallocomplex formation allowed sensitive UV detection. Copper was utilized for the de- termination of EDTA and iron was utilized for the determination of DTPA. In the case of EDTA, a gradient mobile phase separated the components of the formulation from the analyte. In the method for DTPA, the active drug substance, ipilimumab, was eluted in the void. In addition, the optimization of the concentration of the ion-pairing reagent was discussed as a means of enhancing the retention of the aminopolycarboxylic acids (APCAs) including EDTA and DTPA and the specificity of the method. The analytical method development was designed based on the chromatographic properties of the analytes, the nature of the sample matrix and the intended purpose of the method. Validation data were presented for the two methods. Finally, both methods were successfully utilized in determining the fate of the chelates.展开更多
Many animal species have been proven to use the geomagnetic field for their navigation, but the biophysical mechanism of magnetoreception has remained enigmatic. In this paper, we present a special biophysical model t...Many animal species have been proven to use the geomagnetic field for their navigation, but the biophysical mechanism of magnetoreception has remained enigmatic. In this paper, we present a special biophysical model that consists of magnetite-based and radical-pair-based mechanisms for avian magnetoreception. The amplitude of the resultant magnetic field around the magnetic particles corresponds to the geomagnetic field direction and affects the yield of singlet/triplet state products in the radical-pair reactions. Therefore, in the proposed model, the singlet/triplet state product yields are related to the geomagnetic field information for orientational detection. The resultant magnetic fields corresponding to two materials with different magnetic properties are analyzed under different geomagnetic field directions. The results show that ferromagnetic particles in organisms can provide more significant changes in singlet state products than superparam- agnetic particles, and the period of variation for the singlet state products with an included angle in the geomagnetic field is approximately 180 when the magnetic particles are ferromagnetic materials, consistent with the experimental results obtained from the avian magnetic compass. Further, the calculated results of the singlet state products in a reception plane show that the proposed model can explain the avian magnetoreception mechanism with an inclination compass.展开更多
Using first-principles calculations,we explored all the 21 defect-pairs in GaN and considered 6 configurations with different defect-defect distances for each defect-pair.15 defect-pairs with short defect–defect dist...Using first-principles calculations,we explored all the 21 defect-pairs in GaN and considered 6 configurations with different defect-defect distances for each defect-pair.15 defect-pairs with short defect–defect distances are found to be stable during structural relaxation,so they can exist in the GaN lattice once formed during the irradiation of high-energy particles.9 defect-pairs have formation energies lower than 10 eV in the neutral state.The vacancy-pair VN–VN is found to have very low formation energies,as low as 0 eV in p-type and Ga-rich GaN,and act as efficient donors producing two deep donor levels,which can limit the p-type doping and minority carrier lifetime in GaN.VN–VN has been overlooked in the previous study of defects in GaN.Most of these defect-pairs act as donors and produce a large number of defect levels in the band gap.Their formation energies and concentrations are sensitive to the chemical potentials of Ga and N,so their influences on the electrical and optical properties of Ga-rich and N-rich GaN after irradiation should differ significantly.These results about the defect-pairs provide fundamental data for understanding the radiation damage mechanism in GaN and simulating the defect formation and diffusion behavior under irradiation.展开更多
6 Atomic fragment types of organic compound have been defined, and the multilevel atom-pair frequency matrix has been constructed according to the occurrence number in pairs of atomic fragments with different bond len...6 Atomic fragment types of organic compound have been defined, and the multilevel atom-pair frequency matrix has been constructed according to the occurrence number in pairs of atomic fragments with different bond lengths in the molecule. On the basis of them, a novel molecular coding technique: characteristic atom-pair holographic code (CAHC), is obtained. To some extent, this method exhibits a large number of benefits at the same time. For example, it can calculate 2D molecular topological descriptor easily, operate without difficulty and possess definite physicochemical meaning of 3D molecular structural characterization methods, and may fetch the complicated information of molecule, etc. Therefore, it is appropriate for the study on quantitative structure-property/activity relationship (QSPR/QSAR) of medicines and biological molecules. We attempt in this paper to utilize the method of CAHC to the quantitative prediction of reversed-phase liquid chromatogram (RPLC) retention data of 33 purine derivatives and 24 steroids. The fitting multiple correlation coefficient R2, cross-validated multiple correlation coefficient Q2 and predicted ability Q^2 pred over test set's samples of obtained partial least-square (PLS) regression model are respectively 0.990, 0.893 and 0.977, 0.897, 0.941.展开更多
Model of hole-pairs in electrical transport along ab plane in cuprate superconductors has already been proposed. It has been found to be in the shape of 3dx2–y2 orbital of an electron in an atom. This time, model of ...Model of hole-pairs in electrical transport along ab plane in cuprate superconductors has already been proposed. It has been found to be in the shape of 3dx2–y2 orbital of an electron in an atom. This time, model of hole-pairs in transport along c-axis in cuprate superconductors is proposed. In ab-plane, hole-pairs are formed along CuO2 plane;one hole-pair covering 9 - 10 two dimensional CuO2 unit cells in 3dx2–y2 configuration. In the investigation of c-axis hole-pairs, cuprate superconductors have been sub-divided into three categories depending on the number of CuO2 planes/formula unit. There is a little different treatment for finding out the order parameter in each category. Coherence lengths along ab-planes are of the order of a few tens of Angstroms, whereas along c-axis, they are less than even their a-, b-lattice constants. In cuprates with 2 or 3 CuO2 planes, the order parameter is of 3dz2–x2 type in zx-plane with lobes along both the axes much constrained. For cuprates with a single CuO2 layer, the order parameter is of 3dx2–y2 type, but its dimensions are less than a-, b-lattice constants.展开更多
The quantum effect of nonlinear co-tunnelling process, which is dependent on atom-pair tunneling and asymmetry of an double-well trap, is studied by using an asymmetrical extended Bose–Hubbard model. Due to the exist...The quantum effect of nonlinear co-tunnelling process, which is dependent on atom-pair tunneling and asymmetry of an double-well trap, is studied by using an asymmetrical extended Bose–Hubbard model. Due to the existence of atompair tunneling that describes quantum phenomena of ultracold atom-gas clouds in an asymmetrical double-well trap, the asymmetrical extended Bose–Hubbard model is better than the previous Bose–Hubbard model model by comparing with the experimental data cited from the literature. The dependence of dynamics and quantum phase transition on atom-pair tunneling and asymmetry are investigated. Importantly, it shows that the asymmetry of the extended Bose–Hubbard model,corresponding to the bias between double wells, leads to a number of resonance tunneling processes, which tunneling is renamed conditional resonance tunneling, and corrects the atom-number parity effect by controlling the bias between double wells.展开更多
文摘Ion-pairing high-performance liquid chromatography-ultraviolet (HPLC-UV) methods were developed to determine two commonly used chelating agents, ethylenediaminetetraacetic acid (EDTA) in Abilify (a small molecule drug with aripiprazole as the active pharmaceutical ingredient) oral solution and die- thylenetriaminepentaacetic acid (DTPA) in Yervoy (a monoclonal antibody drug with ipilimumab as the active pharmaceutical ingredient) intravenous formulation. Since the analytes, EDTA and DTPA, do not contain chromophores, transition metal ions (Cu2+, Fe3+) which generate highly stable metallocom- plexes with the chelating agents were added into the sample preparation to enhance UV detection. The use of metallocomplexes with ion-pairing chromatography provides the ability to achieve the desired sensitivity and selectivity in the development of the method. Specifically, the sample preparation in- volving metallocomplex formation allowed sensitive UV detection. Copper was utilized for the de- termination of EDTA and iron was utilized for the determination of DTPA. In the case of EDTA, a gradient mobile phase separated the components of the formulation from the analyte. In the method for DTPA, the active drug substance, ipilimumab, was eluted in the void. In addition, the optimization of the concentration of the ion-pairing reagent was discussed as a means of enhancing the retention of the aminopolycarboxylic acids (APCAs) including EDTA and DTPA and the specificity of the method. The analytical method development was designed based on the chromatographic properties of the analytes, the nature of the sample matrix and the intended purpose of the method. Validation data were presented for the two methods. Finally, both methods were successfully utilized in determining the fate of the chelates.
基金Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 51037006)the State Key Development Program for Basic Research of China (Grant No. 2011CB503702)the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51207155)
文摘Many animal species have been proven to use the geomagnetic field for their navigation, but the biophysical mechanism of magnetoreception has remained enigmatic. In this paper, we present a special biophysical model that consists of magnetite-based and radical-pair-based mechanisms for avian magnetoreception. The amplitude of the resultant magnetic field around the magnetic particles corresponds to the geomagnetic field direction and affects the yield of singlet/triplet state products in the radical-pair reactions. Therefore, in the proposed model, the singlet/triplet state product yields are related to the geomagnetic field information for orientational detection. The resultant magnetic fields corresponding to two materials with different magnetic properties are analyzed under different geomagnetic field directions. The results show that ferromagnetic particles in organisms can provide more significant changes in singlet state products than superparam- agnetic particles, and the period of variation for the singlet state products with an included angle in the geomagnetic field is approximately 180 when the magnetic particles are ferromagnetic materials, consistent with the experimental results obtained from the avian magnetic compass. Further, the calculated results of the singlet state products in a reception plane show that the proposed model can explain the avian magnetoreception mechanism with an inclination compass.
基金supported by the Science Challenge Project (TZ2018004)National Natural Science Foundation of China (NSFC) under grant Nos. 61722402 and 91833302+3 种基金National Key Research and Development Program of China (2016YFB0700700)Shanghai Academic/Technology Research Leader (19XD1421300)Fok Ying Tung Education Foundation (161060)the Fundamental Research Funds for the Central Universities
文摘Using first-principles calculations,we explored all the 21 defect-pairs in GaN and considered 6 configurations with different defect-defect distances for each defect-pair.15 defect-pairs with short defect–defect distances are found to be stable during structural relaxation,so they can exist in the GaN lattice once formed during the irradiation of high-energy particles.9 defect-pairs have formation energies lower than 10 eV in the neutral state.The vacancy-pair VN–VN is found to have very low formation energies,as low as 0 eV in p-type and Ga-rich GaN,and act as efficient donors producing two deep donor levels,which can limit the p-type doping and minority carrier lifetime in GaN.VN–VN has been overlooked in the previous study of defects in GaN.Most of these defect-pairs act as donors and produce a large number of defect levels in the band gap.Their formation energies and concentrations are sensitive to the chemical potentials of Ga and N,so their influences on the electrical and optical properties of Ga-rich and N-rich GaN after irradiation should differ significantly.These results about the defect-pairs provide fundamental data for understanding the radiation damage mechanism in GaN and simulating the defect formation and diffusion behavior under irradiation.
基金This work was supported by the State Key Laboratory of Chemo/Biosensing and Chemometrics Foundation (No. 05-12-1), Fok-Yingtung Educational Foundation (No. 98-7-6) and Chongqing University Innovation Foundation of Science and Technology ( No. 06-1-1)
文摘6 Atomic fragment types of organic compound have been defined, and the multilevel atom-pair frequency matrix has been constructed according to the occurrence number in pairs of atomic fragments with different bond lengths in the molecule. On the basis of them, a novel molecular coding technique: characteristic atom-pair holographic code (CAHC), is obtained. To some extent, this method exhibits a large number of benefits at the same time. For example, it can calculate 2D molecular topological descriptor easily, operate without difficulty and possess definite physicochemical meaning of 3D molecular structural characterization methods, and may fetch the complicated information of molecule, etc. Therefore, it is appropriate for the study on quantitative structure-property/activity relationship (QSPR/QSAR) of medicines and biological molecules. We attempt in this paper to utilize the method of CAHC to the quantitative prediction of reversed-phase liquid chromatogram (RPLC) retention data of 33 purine derivatives and 24 steroids. The fitting multiple correlation coefficient R2, cross-validated multiple correlation coefficient Q2 and predicted ability Q^2 pred over test set's samples of obtained partial least-square (PLS) regression model are respectively 0.990, 0.893 and 0.977, 0.897, 0.941.
文摘Model of hole-pairs in electrical transport along ab plane in cuprate superconductors has already been proposed. It has been found to be in the shape of 3dx2–y2 orbital of an electron in an atom. This time, model of hole-pairs in transport along c-axis in cuprate superconductors is proposed. In ab-plane, hole-pairs are formed along CuO2 plane;one hole-pair covering 9 - 10 two dimensional CuO2 unit cells in 3dx2–y2 configuration. In the investigation of c-axis hole-pairs, cuprate superconductors have been sub-divided into three categories depending on the number of CuO2 planes/formula unit. There is a little different treatment for finding out the order parameter in each category. Coherence lengths along ab-planes are of the order of a few tens of Angstroms, whereas along c-axis, they are less than even their a-, b-lattice constants. In cuprates with 2 or 3 CuO2 planes, the order parameter is of 3dz2–x2 type in zx-plane with lobes along both the axes much constrained. For cuprates with a single CuO2 layer, the order parameter is of 3dx2–y2 type, but its dimensions are less than a-, b-lattice constants.
基金Project supported by the National Natural Science Foundation of China(Grant No.11075099)
文摘The quantum effect of nonlinear co-tunnelling process, which is dependent on atom-pair tunneling and asymmetry of an double-well trap, is studied by using an asymmetrical extended Bose–Hubbard model. Due to the existence of atompair tunneling that describes quantum phenomena of ultracold atom-gas clouds in an asymmetrical double-well trap, the asymmetrical extended Bose–Hubbard model is better than the previous Bose–Hubbard model model by comparing with the experimental data cited from the literature. The dependence of dynamics and quantum phase transition on atom-pair tunneling and asymmetry are investigated. Importantly, it shows that the asymmetry of the extended Bose–Hubbard model,corresponding to the bias between double wells, leads to a number of resonance tunneling processes, which tunneling is renamed conditional resonance tunneling, and corrects the atom-number parity effect by controlling the bias between double wells.