The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enh...The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.展开更多
An OH^--slow-release strategy was established to controllably tune the( α-and β-) phase of nickel cobalt binary hydroxide in the presence of ammonium chloride. Ammonium chloride is added to the ionic solution to reg...An OH^--slow-release strategy was established to controllably tune the( α-and β-) phase of nickel cobalt binary hydroxide in the presence of ammonium chloride. Ammonium chloride is added to the ionic solution to regulate the p H of the solution and slow down the release of OH^-, effectively regulating the phase, nanostructure, interlayer spacing, surface area, thickness, and the performance of binary Ni –Co hydroxide. The ion-slow-release mechanism is conducive to the formation of α-phase with larger interlayer spacing and thinner flakes rather than β-phase. Attributed to the enlarged interlayer spacing, thinner nanosheets, and more exposed active sites, the resultant α-phase hydroxides(NCNS-5.2), displayed much lower over potential of 285 mV with respect to the dense-stacked β-phase hydroxides(362 mV) for OER at 10 mA/cm^2. It also exhibited high specific capacitance of 1474.2 F/g, when tested at 0.5 A/g within a voltage range of 0–0.45 Vvs. Hg/Hg O. This composite was also stable for water oxidation reaction and supercapacitor. The proof-of-concept of using controlled-release agent may provide suggestive insights for the material innovation and a variety of applications.展开更多
In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal ...In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal graph.Most GCNs define the graph topology by physical relations of the human joints.However,this predefined graph ignores the spatial relationship between non-adjacent joint pairs in special actions and the behavior dependence between joint pairs,resulting in a low recognition rate for specific actions with implicit correlation between joint pairs.In addition,existing methods ignore the trend correlation between adjacent frames within an action and context clues,leading to erroneous action recognition with similar poses.Therefore,this study proposes a learnable GCN based on behavior dependence,which considers implicit joint correlation by constructing a dynamic learnable graph with extraction of specific behavior dependence of joint pairs.By using the weight relationship between the joint pairs,an adaptive model is constructed.It also designs a self-attention module to obtain their inter-frame topological relationship for exploring the context of actions.Combining the shared topology and the multi-head self-attention map,the module obtains the context-based clue topology to update the dynamic graph convolution,achieving accurate recognition of different actions with similar poses.Detailed experiments on public datasets demonstrate that the proposed method achieves better results and realizes higher quality representation of actions under various evaluation protocols compared to state-of-the-art methods.展开更多
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i...Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis.展开更多
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr...BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.展开更多
The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainl...The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainly concentrate on the cooperative pursuit of multiple players in two-dimensional pursuit-evasion games. However, these approaches can hardly be applied to practical situations where players usually move in three-dimensional space with a three-degree-of-freedom control. In this paper,we make the first attempt to investigate the equilibrium strategy of the realistic pursuit-evasion game, in which the pursuer follows a three-degree-of-freedom control, and the evader moves freely. First, we describe the pursuer's three-degree-of-freedom control and the evader's relative coordinate. We then rigorously derive the equilibrium strategy by solving the retrogressive path equation according to the Hamilton-Jacobi-Bellman-Isaacs(HJBI) method, which divides the pursuit-evasion process into the navigation and acceleration phases. Besides, we analyze the maximum allowable speed for the pursuer to capture the evader successfully and provide the strategy with which the evader can escape when the pursuer's speed exceeds the threshold. We further conduct comparison tests with various unilateral deviations to verify that the proposed strategy forms a Nash equilibrium.展开更多
A two-step information extraction method is presented to capture the specific index-related information more accurately.In the first step,the overall process variables are separated into two sets based on Pearson corr...A two-step information extraction method is presented to capture the specific index-related information more accurately.In the first step,the overall process variables are separated into two sets based on Pearson correlation coefficient.One is process variables strongly related to the specific index and the other is process variables weakly related to the specific index.Through performing principal component analysis(PCA)on the two sets,the directions of latent variables have changed.In other words,the correlation between latent variables in the set with strong correlation and the specific index may become weaker.Meanwhile,the correlation between latent variables in the set with weak correlation and the specific index may be enhanced.In the second step,the two sets are further divided into a subset strongly related to the specific index and a subset weakly related to the specific index from the perspective of latent variables using Pearson correlation coefficient,respectively.Two subsets strongly related to the specific index form a new subspace related to the specific index.Then,a hybrid monitoring strategy based on predicted specific index using partial least squares(PLS)and T2statistics-based method is proposed for specific index-related process monitoring using comprehensive information.Predicted specific index reflects real-time information for the specific index.T2statistics are used to monitor specific index-related information.Finally,the proposed method is applied to Tennessee Eastman(TE).The results indicate the effectiveness of the proposed method.展开更多
The published article titled“New Solution Generation Strategy to Improve Brain Storm Optimization Algorithm for Classification”has been retracted from the Journal on Internet of Things,Vol.3,No.3,109-118,2021.DOI:10...The published article titled“New Solution Generation Strategy to Improve Brain Storm Optimization Algorithm for Classification”has been retracted from the Journal on Internet of Things,Vol.3,No.3,109-118,2021.DOI:10.32604/jiot.2021.014980 URL:https://www.techscience.com/jiot/v3n3/46020/pdf After the publication of the above article,the authors Xue et al.declare that due to the following reasons,they have to retract the published article from Journal on Internet of Things:1.The authors need to conduct more indepth experiments to verify the proposed method regarding problematic experimental setup,which leads to an unfair comparison with the comparison algorithm.展开更多
Electric power training is essential for ensuring the safety and reliability of the system.In this study,we introduce a novel Abnormal Action Recognition(AAR)system that utilizes a Lightweight Pose Estimation Network(...Electric power training is essential for ensuring the safety and reliability of the system.In this study,we introduce a novel Abnormal Action Recognition(AAR)system that utilizes a Lightweight Pose Estimation Network(LPEN)to efficiently and effectively detect abnormal fall-down and trespass incidents in electric power training scenarios.The LPEN network,comprising three stages—MobileNet,Initial Stage,and Refinement Stage—is employed to swiftly extract image features,detect human key points,and refine them for accurate analysis.Subsequently,a Pose-aware Action Analysis Module(PAAM)captures the positional coordinates of human skeletal points in each frame.Finally,an Abnormal Action Inference Module(AAIM)evaluates whether abnormal fall-down or unauthorized trespass behavior is occurring.For fall-down recognition,three criteria—falling speed,main angles of skeletal points,and the person’s bounding box—are considered.To identify unauthorized trespass,emphasis is placed on the position of the ankles.Extensive experiments validate the effectiveness and efficiency of the proposed system in ensuring the safety and reliability of electric power training.展开更多
We are writing in response to the article titled“Addressing the needs and rights of sex workers for HIV healthcare services in the Philippines”[1].The article calls for attention on the significant challenges faced ...We are writing in response to the article titled“Addressing the needs and rights of sex workers for HIV healthcare services in the Philippines”[1].The article calls for attention on the significant challenges faced by sex workers in the Philippines in accessing HIV healthcare.We appreciate the article’s effort to examine these issues in depth.We would like to present a constant flow of thoughts in this letter while highlighting the positive aspects,potential obstacles,and additional points that contribute to this ongoing discussion.展开更多
It is well-known that elevated low-density lipoprotein cholesterol(LDL-C)is a causal risk factor for atheroscler-otic cardiovascular disease(ASCVD),statins are cornerstone drugs for the cause-based treatment of ASCVD,...It is well-known that elevated low-density lipoprotein cholesterol(LDL-C)is a causal risk factor for atheroscler-otic cardiovascular disease(ASCVD),statins are cornerstone drugs for the cause-based treatment of ASCVD,which has created a new era for ASCVD therapy.However,statin intolerance is not clinically uncommon,which there are several issues with confu-sion and misunderstandings.Hence,a file named Chinese Expert Consensus on the Diagnosis and Management Strategy of Pa-tients With Statin Intolerance,like a navigator,has recently been published written by a team of experts from the Cardiovascular Metabolic Medicine Professional Committee,Expert Committee of the National Center for Cardiovascular Diseases aiming to en-hance the standardized clinical application of statins and improve the prevention and clinical outcome.In this article,author briefly summarized the key points of above consensus in order to helping to comprehending the content of the consensus sugges-tions.展开更多
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive impairments in the initial stage, which lead to severe cognitive dysfunction in the later stage. Action observation therapy (AOT) is...Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive impairments in the initial stage, which lead to severe cognitive dysfunction in the later stage. Action observation therapy (AOT) is a multisensory cognitive rehabilitation technique where the patient initially observes the actions and then tries to perform. The study aimed to examine the impact of AOT along with usual physiotherapy interventions to reduce depression, improve cognition and balance of a patient with AD. A 67 years old patient with AD was selected for this study because the patient has been suffering from depression, dementia, and physical dysfunction along with some other health conditions like diabetes and hypertension. Before starting intervention, a baseline assessment was done through the Beck Depression Inventory (BDI) tool, the Mini-Cog Scale, and the Berg Balance Scale (BBS). The patient received 12 sessions of AOT along with usual physiotherapy interventions thrice a week for four weeks, which included 45 minutes of each session. After four weeks of intervention, the patient demonstrated significant improvement in depression, cognition, and balance, whereas the BDI score declined from moderate 21/63 to mild 15/63 level of depression. The Mini-Cog score improved from 2/5 to 4/5, and the BBS score increased from 18/56 to 37/56. It is concluded that AOT along with usual physiotherapy intervention helps to reduce depression, improve cognition and balance of people with AD.展开更多
Laboratory safety is a critical area of broad societal concern,particularly in the detection of abnormal actions.To enhance the efficiency and accuracy of detecting such actions,this paper introduces a novel method ca...Laboratory safety is a critical area of broad societal concern,particularly in the detection of abnormal actions.To enhance the efficiency and accuracy of detecting such actions,this paper introduces a novel method called TubeRAPT(Tubelet Transformer based onAdapter and Prefix TrainingModule).Thismethod primarily comprises three key components:the TubeR network,an adaptive clustering attention mechanism,and a prefix training module.These components work in synergy to address the challenge of knowledge preservation in models pretrained on large datasets while maintaining training efficiency.The TubeR network serves as the backbone for spatio-temporal feature extraction,while the adaptive clustering attention mechanism refines the focus on relevant information.The prefix training module facilitates efficient fine-tuning and knowledge transfer.Experimental results demonstrate the effectiveness of TubeRAPT,achieving a 68.44%mean Average Precision(mAP)on the CLA(Crazy LabActivity)small-scale dataset,marking a significant improvement of 1.53%over the previous TubeR method.This research not only showcases the potential applications of TubeRAPT in the field of abnormal action detection but also offers innovative ideas and technical support for the future development of laboratory safety monitoring technologies.The proposed method has implications for improving safety management systems in various laboratory environments,potentially reducing accidents and enhancing overall workplace safety.展开更多
This study presents a general optimal trajectory planning(GOTP)framework for autonomous vehicles(AVs)that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently.Firstly,we emplo...This study presents a general optimal trajectory planning(GOTP)framework for autonomous vehicles(AVs)that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently.Firstly,we employ the fifth-order Bezier curve to generate and smooth the reference path along the road centerline.Cartesian coordinates are then transformed to achieve the curvature continuity of the generated curve.Considering the road constraints and vehicle dynamics,limited polynomial candidate trajectories are generated and smoothed in a curvilinear coordinate system.Furthermore,in selecting the optimal trajectory,we develop a unified and auto-tune objective function based on the principle of least action by employing AVs to simulate drivers’behavior and summarizing their manipulation characteristics of“seeking benefits and avoiding losses.”Finally,by integrating the idea of receding-horizon optimization,the proposed framework is achieved by considering dynamic multi-performance objectives and selecting trajectories that satisfy feasibility,optimality,and adaptability.Extensive simulations and experiments are performed,and the results demonstrate the framework’s feasibility and effectiveness,which avoids both dynamic and static obstacles and applies to various scenarios with multi-source interactive traffic participants.Moreover,we prove that the proposed method can guarantee real-time planning and safety requirements compared to drivers’manipulation.展开更多
Introduced by the late Prime Minister Shinzo Abe and inherited and developed by Fumio Kishida,Japan's“Indo–Pacific”strategy has gradually taken shape.This strategy can be deemed a broad vision,covering a wide r...Introduced by the late Prime Minister Shinzo Abe and inherited and developed by Fumio Kishida,Japan's“Indo–Pacific”strategy has gradually taken shape.This strategy can be deemed a broad vision,covering a wide range of topics and an extensive network of partners,with a strong trend of pan-securitization.It is a comprehensive inter national st rateg y based on Japan's alliance policy and China containment strategy,following a global,security-oriented approach.Driven by considerations such as maintaining its economic status,realizing its long-cherished dream of becoming a political powerhouse,and containing China,Japan has stepped up its“Indo–Pacific”strategy,which may influence global development,undermine regional maritime security,and impede China's reunification process.Meanwhile,Japan's“Indo–Pacific”strategy faces the triple challenge of a strategic overdraft,the unstable economic foundations,and the weak external support.These constraints may not suffice to reverse the direction of Japan's“Indo–Pacific”strategy in the short term but will limit its effectiveness.展开更多
Recognition of human gesture actions is a challenging issue due to the complex patterns in both visual andskeletal features. Existing gesture action recognition (GAR) methods typically analyze visual and skeletal data...Recognition of human gesture actions is a challenging issue due to the complex patterns in both visual andskeletal features. Existing gesture action recognition (GAR) methods typically analyze visual and skeletal data,failing to meet the demands of various scenarios. Furthermore, multi-modal approaches lack the versatility toefficiently process both uniformand disparate input patterns.Thus, in this paper, an attention-enhanced pseudo-3Dresidual model is proposed to address the GAR problem, called HgaNets. This model comprises two independentcomponents designed formodeling visual RGB (red, green and blue) images and 3Dskeletal heatmaps, respectively.More specifically, each component consists of two main parts: 1) a multi-dimensional attention module forcapturing important spatial, temporal and feature information in human gestures;2) a spatiotemporal convolutionmodule that utilizes pseudo-3D residual convolution to characterize spatiotemporal features of gestures. Then,the output weights of the two components are fused to generate the recognition results. Finally, we conductedexperiments on four datasets to assess the efficiency of the proposed model. The results show that the accuracy onfour datasets reaches 85.40%, 91.91%, 94.70%, and 95.30%, respectively, as well as the inference time is 0.54 s andthe parameters is 2.74M. These findings highlight that the proposed model outperforms other existing approachesin terms of recognition accuracy.展开更多
As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Informatio...As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content.展开更多
Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and qu...Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%.展开更多
The flourishing progress in nanotechnology offers boundless opportunities for agriculture,particularly in the realm of nanopesticides research and development.However,concerns have been raised regarding the human and ...The flourishing progress in nanotechnology offers boundless opportunities for agriculture,particularly in the realm of nanopesticides research and development.However,concerns have been raised regarding the human and environmental safety issues stemming from the unrestrained use of non-therapeutic nanomaterials in nanopesticides.It is also important to consider whether the current development strategy of nanopesticides based on nanocarriers can strike a balance between investment and return,and if the complex material composition genuinely improves the efficiency,safety,and circularity of nanopesticides.Herein,we introduced the concept of nanopesticides with minimizing carriers(NMC)prepared through prodrug design and molecular self-assembly emerging as practical tools to address the current limitations,and compared it with nanopesticides employing non-therapeutic nanomaterials as carriers(NNC).We further summarized the current development strategy of NMC and examined potential challenges in its preparation,performance,and production.Overall,we asserted that the development of NMC systems can serve as the innovative driving force catalyzing a green and efficient revolution in nanopesticides,offering a way out of the current predicament.展开更多
基金supported by the National Natural Science Foundation of China,No.82003965the Science and Technology Research Project of Sichuan Provincial Administration of Traditional Chinese Medicine,No.2024MS167(to LH)+2 种基金the Xinglin Scholar Program of Chengdu University of Traditional Chinese Medicine,No.QJRC2022033(to LH)the Improvement Plan for the'Xinglin Scholar'Scientific Research Talent Program at Chengdu University of Traditional Chinese Medicine,No.XKTD2023002(to LH)the 2023 National Project of the College Students'Innovation and Entrepreneurship Training Program at Chengdu University of Traditional Chinese Medicine,No.202310633028(to FD)。
文摘The interaction between the gut microbiota and cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)signaling pathway in the host's central nervous system plays a crucial role in neurological diseases and enhances communication along the gut–brain axis.The gut microbiota influences the cAMP-PKA signaling pathway through its metabolites,which activates the vagus nerve and modulates the immune and neuroendocrine systems.Conversely,alterations in the cAMP-PKA signaling pathway can affect the composition of the gut microbiota,creating a dynamic network of microbial-host interactions.This reciprocal regulation affects neurodevelopment,neurotransmitter control,and behavioral traits,thus playing a role in the modulation of neurological diseases.The coordinated activity of the gut microbiota and the cAMP-PKA signaling pathway regulates processes such as amyloid-β protein aggregation,mitochondrial dysfunction,abnormal energy metabolism,microglial activation,oxidative stress,and neurotransmitter release,which collectively influence the onset and progression of neurological diseases.This study explores the complex interplay between the gut microbiota and cAMP-PKA signaling pathway,along with its implications for potential therapeutic interventions in neurological diseases.Recent pharmacological research has shown that restoring the balance between gut flora and cAMP-PKA signaling pathway may improve outcomes in neurodegenerative diseases and emotional disorders.This can be achieved through various methods such as dietary modifications,probiotic supplements,Chinese herbal extracts,combinations of Chinese herbs,and innovative dosage forms.These findings suggest that regulating the gut microbiota and cAMP-PKA signaling pathway may provide valuable evidence for developing novel therapeutic approaches for neurodegenerative diseases.
基金supported by the National Natural Science Foundation of China(21476145)
文摘An OH^--slow-release strategy was established to controllably tune the( α-and β-) phase of nickel cobalt binary hydroxide in the presence of ammonium chloride. Ammonium chloride is added to the ionic solution to regulate the p H of the solution and slow down the release of OH^-, effectively regulating the phase, nanostructure, interlayer spacing, surface area, thickness, and the performance of binary Ni –Co hydroxide. The ion-slow-release mechanism is conducive to the formation of α-phase with larger interlayer spacing and thinner flakes rather than β-phase. Attributed to the enlarged interlayer spacing, thinner nanosheets, and more exposed active sites, the resultant α-phase hydroxides(NCNS-5.2), displayed much lower over potential of 285 mV with respect to the dense-stacked β-phase hydroxides(362 mV) for OER at 10 mA/cm^2. It also exhibited high specific capacitance of 1474.2 F/g, when tested at 0.5 A/g within a voltage range of 0–0.45 Vvs. Hg/Hg O. This composite was also stable for water oxidation reaction and supercapacitor. The proof-of-concept of using controlled-release agent may provide suggestive insights for the material innovation and a variety of applications.
基金supported in part by the 2023 Key Supported Project of the 14th Five Year Plan for Education and Science in Hunan Province with No.ND230795.
文摘In recent years,skeleton-based action recognition has made great achievements in Computer Vision.A graph convolutional network(GCN)is effective for action recognition,modelling the human skeleton as a spatio-temporal graph.Most GCNs define the graph topology by physical relations of the human joints.However,this predefined graph ignores the spatial relationship between non-adjacent joint pairs in special actions and the behavior dependence between joint pairs,resulting in a low recognition rate for specific actions with implicit correlation between joint pairs.In addition,existing methods ignore the trend correlation between adjacent frames within an action and context clues,leading to erroneous action recognition with similar poses.Therefore,this study proposes a learnable GCN based on behavior dependence,which considers implicit joint correlation by constructing a dynamic learnable graph with extraction of specific behavior dependence of joint pairs.By using the weight relationship between the joint pairs,an adaptive model is constructed.It also designs a self-attention module to obtain their inter-frame topological relationship for exploring the context of actions.Combining the shared topology and the multi-head self-attention map,the module obtains the context-based clue topology to update the dynamic graph convolution,achieving accurate recognition of different actions with similar poses.Detailed experiments on public datasets demonstrate that the proposed method achieves better results and realizes higher quality representation of actions under various evaluation protocols compared to state-of-the-art methods.
文摘Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis.
基金Supported by Science and Technology Support Program of Qiandongnan Prefecture,No.Qiandongnan Sci-Tech Support[2021]12Guizhou Province High-Level Innovative Talent Training Program,No.Qiannan Thousand Talents[2022]201701.
文摘BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.
基金supported in part by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA27030100)National Natural Science Foundation of China(72293575, 11832001)。
文摘The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainly concentrate on the cooperative pursuit of multiple players in two-dimensional pursuit-evasion games. However, these approaches can hardly be applied to practical situations where players usually move in three-dimensional space with a three-degree-of-freedom control. In this paper,we make the first attempt to investigate the equilibrium strategy of the realistic pursuit-evasion game, in which the pursuer follows a three-degree-of-freedom control, and the evader moves freely. First, we describe the pursuer's three-degree-of-freedom control and the evader's relative coordinate. We then rigorously derive the equilibrium strategy by solving the retrogressive path equation according to the Hamilton-Jacobi-Bellman-Isaacs(HJBI) method, which divides the pursuit-evasion process into the navigation and acceleration phases. Besides, we analyze the maximum allowable speed for the pursuer to capture the evader successfully and provide the strategy with which the evader can escape when the pursuer's speed exceeds the threshold. We further conduct comparison tests with various unilateral deviations to verify that the proposed strategy forms a Nash equilibrium.
基金Projects(61374140,61673173)supported by the National Natural Science Foundation of ChinaProjects(222201717006,222201714031)supported by the Fundamental Research Funds for the Central Universities,China
文摘A two-step information extraction method is presented to capture the specific index-related information more accurately.In the first step,the overall process variables are separated into two sets based on Pearson correlation coefficient.One is process variables strongly related to the specific index and the other is process variables weakly related to the specific index.Through performing principal component analysis(PCA)on the two sets,the directions of latent variables have changed.In other words,the correlation between latent variables in the set with strong correlation and the specific index may become weaker.Meanwhile,the correlation between latent variables in the set with weak correlation and the specific index may be enhanced.In the second step,the two sets are further divided into a subset strongly related to the specific index and a subset weakly related to the specific index from the perspective of latent variables using Pearson correlation coefficient,respectively.Two subsets strongly related to the specific index form a new subspace related to the specific index.Then,a hybrid monitoring strategy based on predicted specific index using partial least squares(PLS)and T2statistics-based method is proposed for specific index-related process monitoring using comprehensive information.Predicted specific index reflects real-time information for the specific index.T2statistics are used to monitor specific index-related information.Finally,the proposed method is applied to Tennessee Eastman(TE).The results indicate the effectiveness of the proposed method.
文摘The published article titled“New Solution Generation Strategy to Improve Brain Storm Optimization Algorithm for Classification”has been retracted from the Journal on Internet of Things,Vol.3,No.3,109-118,2021.DOI:10.32604/jiot.2021.014980 URL:https://www.techscience.com/jiot/v3n3/46020/pdf After the publication of the above article,the authors Xue et al.declare that due to the following reasons,they have to retract the published article from Journal on Internet of Things:1.The authors need to conduct more indepth experiments to verify the proposed method regarding problematic experimental setup,which leads to an unfair comparison with the comparison algorithm.
基金supportted by Natural Science Foundation of Jiangsu Province(No.BK20230696).
文摘Electric power training is essential for ensuring the safety and reliability of the system.In this study,we introduce a novel Abnormal Action Recognition(AAR)system that utilizes a Lightweight Pose Estimation Network(LPEN)to efficiently and effectively detect abnormal fall-down and trespass incidents in electric power training scenarios.The LPEN network,comprising three stages—MobileNet,Initial Stage,and Refinement Stage—is employed to swiftly extract image features,detect human key points,and refine them for accurate analysis.Subsequently,a Pose-aware Action Analysis Module(PAAM)captures the positional coordinates of human skeletal points in each frame.Finally,an Abnormal Action Inference Module(AAIM)evaluates whether abnormal fall-down or unauthorized trespass behavior is occurring.For fall-down recognition,three criteria—falling speed,main angles of skeletal points,and the person’s bounding box—are considered.To identify unauthorized trespass,emphasis is placed on the position of the ankles.Extensive experiments validate the effectiveness and efficiency of the proposed system in ensuring the safety and reliability of electric power training.
文摘We are writing in response to the article titled“Addressing the needs and rights of sex workers for HIV healthcare services in the Philippines”[1].The article calls for attention on the significant challenges faced by sex workers in the Philippines in accessing HIV healthcare.We appreciate the article’s effort to examine these issues in depth.We would like to present a constant flow of thoughts in this letter while highlighting the positive aspects,potential obstacles,and additional points that contribute to this ongoing discussion.
基金supported by CAMS Innovation Fund for Medical Sciences(CIFMS,2021-I2M-C&TB-030).
文摘It is well-known that elevated low-density lipoprotein cholesterol(LDL-C)is a causal risk factor for atheroscler-otic cardiovascular disease(ASCVD),statins are cornerstone drugs for the cause-based treatment of ASCVD,which has created a new era for ASCVD therapy.However,statin intolerance is not clinically uncommon,which there are several issues with confu-sion and misunderstandings.Hence,a file named Chinese Expert Consensus on the Diagnosis and Management Strategy of Pa-tients With Statin Intolerance,like a navigator,has recently been published written by a team of experts from the Cardiovascular Metabolic Medicine Professional Committee,Expert Committee of the National Center for Cardiovascular Diseases aiming to en-hance the standardized clinical application of statins and improve the prevention and clinical outcome.In this article,author briefly summarized the key points of above consensus in order to helping to comprehending the content of the consensus sugges-tions.
文摘Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive impairments in the initial stage, which lead to severe cognitive dysfunction in the later stage. Action observation therapy (AOT) is a multisensory cognitive rehabilitation technique where the patient initially observes the actions and then tries to perform. The study aimed to examine the impact of AOT along with usual physiotherapy interventions to reduce depression, improve cognition and balance of a patient with AD. A 67 years old patient with AD was selected for this study because the patient has been suffering from depression, dementia, and physical dysfunction along with some other health conditions like diabetes and hypertension. Before starting intervention, a baseline assessment was done through the Beck Depression Inventory (BDI) tool, the Mini-Cog Scale, and the Berg Balance Scale (BBS). The patient received 12 sessions of AOT along with usual physiotherapy interventions thrice a week for four weeks, which included 45 minutes of each session. After four weeks of intervention, the patient demonstrated significant improvement in depression, cognition, and balance, whereas the BDI score declined from moderate 21/63 to mild 15/63 level of depression. The Mini-Cog score improved from 2/5 to 4/5, and the BBS score increased from 18/56 to 37/56. It is concluded that AOT along with usual physiotherapy intervention helps to reduce depression, improve cognition and balance of people with AD.
基金supported by the Philosophy and Social Sciences Planning Project of Guangdong Province of China(GD23XGL099)the Guangdong General Universities Young Innovative Talents Project(2023KQNCX247)the Research Project of Shanwei Institute of Technology(SWKT22-019).
文摘Laboratory safety is a critical area of broad societal concern,particularly in the detection of abnormal actions.To enhance the efficiency and accuracy of detecting such actions,this paper introduces a novel method called TubeRAPT(Tubelet Transformer based onAdapter and Prefix TrainingModule).Thismethod primarily comprises three key components:the TubeR network,an adaptive clustering attention mechanism,and a prefix training module.These components work in synergy to address the challenge of knowledge preservation in models pretrained on large datasets while maintaining training efficiency.The TubeR network serves as the backbone for spatio-temporal feature extraction,while the adaptive clustering attention mechanism refines the focus on relevant information.The prefix training module facilitates efficient fine-tuning and knowledge transfer.Experimental results demonstrate the effectiveness of TubeRAPT,achieving a 68.44%mean Average Precision(mAP)on the CLA(Crazy LabActivity)small-scale dataset,marking a significant improvement of 1.53%over the previous TubeR method.This research not only showcases the potential applications of TubeRAPT in the field of abnormal action detection but also offers innovative ideas and technical support for the future development of laboratory safety monitoring technologies.The proposed method has implications for improving safety management systems in various laboratory environments,potentially reducing accidents and enhancing overall workplace safety.
基金supported by the National Natural Science Foundation of China(the Key Project,52131201Science Fund for Creative Research Groups,52221005)+1 种基金the China Scholarship Councilthe Joint Laboratory for Internet of Vehicles,Ministry of Education–China MOBILE Communications Corporation。
文摘This study presents a general optimal trajectory planning(GOTP)framework for autonomous vehicles(AVs)that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently.Firstly,we employ the fifth-order Bezier curve to generate and smooth the reference path along the road centerline.Cartesian coordinates are then transformed to achieve the curvature continuity of the generated curve.Considering the road constraints and vehicle dynamics,limited polynomial candidate trajectories are generated and smoothed in a curvilinear coordinate system.Furthermore,in selecting the optimal trajectory,we develop a unified and auto-tune objective function based on the principle of least action by employing AVs to simulate drivers’behavior and summarizing their manipulation characteristics of“seeking benefits and avoiding losses.”Finally,by integrating the idea of receding-horizon optimization,the proposed framework is achieved by considering dynamic multi-performance objectives and selecting trajectories that satisfy feasibility,optimality,and adaptability.Extensive simulations and experiments are performed,and the results demonstrate the framework’s feasibility and effectiveness,which avoids both dynamic and static obstacles and applies to various scenarios with multi-source interactive traffic participants.Moreover,we prove that the proposed method can guarantee real-time planning and safety requirements compared to drivers’manipulation.
文摘Introduced by the late Prime Minister Shinzo Abe and inherited and developed by Fumio Kishida,Japan's“Indo–Pacific”strategy has gradually taken shape.This strategy can be deemed a broad vision,covering a wide range of topics and an extensive network of partners,with a strong trend of pan-securitization.It is a comprehensive inter national st rateg y based on Japan's alliance policy and China containment strategy,following a global,security-oriented approach.Driven by considerations such as maintaining its economic status,realizing its long-cherished dream of becoming a political powerhouse,and containing China,Japan has stepped up its“Indo–Pacific”strategy,which may influence global development,undermine regional maritime security,and impede China's reunification process.Meanwhile,Japan's“Indo–Pacific”strategy faces the triple challenge of a strategic overdraft,the unstable economic foundations,and the weak external support.These constraints may not suffice to reverse the direction of Japan's“Indo–Pacific”strategy in the short term but will limit its effectiveness.
基金the National Natural Science Foundation of China under Grant No.62072255.
文摘Recognition of human gesture actions is a challenging issue due to the complex patterns in both visual andskeletal features. Existing gesture action recognition (GAR) methods typically analyze visual and skeletal data,failing to meet the demands of various scenarios. Furthermore, multi-modal approaches lack the versatility toefficiently process both uniformand disparate input patterns.Thus, in this paper, an attention-enhanced pseudo-3Dresidual model is proposed to address the GAR problem, called HgaNets. This model comprises two independentcomponents designed formodeling visual RGB (red, green and blue) images and 3Dskeletal heatmaps, respectively.More specifically, each component consists of two main parts: 1) a multi-dimensional attention module forcapturing important spatial, temporal and feature information in human gestures;2) a spatiotemporal convolutionmodule that utilizes pseudo-3D residual convolution to characterize spatiotemporal features of gestures. Then,the output weights of the two components are fused to generate the recognition results. Finally, we conductedexperiments on four datasets to assess the efficiency of the proposed model. The results show that the accuracy onfour datasets reaches 85.40%, 91.91%, 94.70%, and 95.30%, respectively, as well as the inference time is 0.54 s andthe parameters is 2.74M. These findings highlight that the proposed model outperforms other existing approachesin terms of recognition accuracy.
基金supported by the Key R&D Program of Anhui Province in 2020 under Grant No.202004a05020078China Environment for Network Innovations(CENI)under Grant No.2016-000052-73-01-000515.
文摘As users’access to the network has evolved into the acquisition of mass contents instead of IP addresses,the IP network architecture based on end-to-end communication cannot meet users’needs.Therefore,the Information-Centric Networking(ICN)came into being.From a technical point of view,ICN is a promising future network architecture.Researching and customizing a reasonable pricing mechanism plays a positive role in promoting the deployment of ICN.The current research on ICN pricing mechanism is focused on paid content.Therefore,we study an ICN pricing model for free content,which uses game theory based on Nash equilibrium to analysis.In this work,advertisers are considered,and an advertiser model is established to describe the economic interaction between advertisers and ICN entities.This solution can formulate the best pricing strategy for all ICN entities and maximize the benefits of each entity.Our extensive analysis and numerical results show that the proposed pricing framework is significantly better than existing solutions when it comes to free content.
基金funded by the National Natural Science Foundation of China(No.42372331)the Henan Excellent Youth Science Fund Project(No.242300421145)the Colleges and Universities Youth and Innovation Science and Technology Support Plan of Shandong Province(No.2021KJ024).
文摘Water decoupling charge blasting excels in rock breaking,relying on its uniform pressure transmission and low energy dissipation.The water decoupling coefficients can adjust the contributions of the stress wave and quasi-static pressure.However,the quantitative relationship between the two contributions is unclear,and it is difficult to provide reasonable theoretical support for the design of water decoupling blasting.In this study,a theoretical model of blasting fracturing partitioning is established.The mechanical mechanism and determination method of the optimal decoupling coefficient are obtained.The reliability is verified through model experiments and a field test.The results show that with the increasing of decoupling coefficient,the rock breaking ability of blasting dynamic action decreases,while quasi-static action increases and then decreases.The ability of quasi-static action to wedge into cracks changes due to the spatial adjustment of the blast hole and crushed zone.The quasi-static action plays a leading role in the fracturing range,determining an optimal decoupling coefficient.The optimal water decoupling coefficient is not a fixed value,which can be obtained by the proposed theoretical model.Compared with the theoretical results,the maximum error in the model experiment results is 8.03%,and the error in the field test result is 3.04%.
基金funded by the National Key Research Development Program of China(2022YFD1700500)Beijing Natural Science Foundation(6232033).
文摘The flourishing progress in nanotechnology offers boundless opportunities for agriculture,particularly in the realm of nanopesticides research and development.However,concerns have been raised regarding the human and environmental safety issues stemming from the unrestrained use of non-therapeutic nanomaterials in nanopesticides.It is also important to consider whether the current development strategy of nanopesticides based on nanocarriers can strike a balance between investment and return,and if the complex material composition genuinely improves the efficiency,safety,and circularity of nanopesticides.Herein,we introduced the concept of nanopesticides with minimizing carriers(NMC)prepared through prodrug design and molecular self-assembly emerging as practical tools to address the current limitations,and compared it with nanopesticides employing non-therapeutic nanomaterials as carriers(NNC).We further summarized the current development strategy of NMC and examined potential challenges in its preparation,performance,and production.Overall,we asserted that the development of NMC systems can serve as the innovative driving force catalyzing a green and efficient revolution in nanopesticides,offering a way out of the current predicament.