期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
复双平面格拉斯曼中实超曲面的*-Ricci张量
1
作者 廖春艳 陈小民 《南昌大学学报(理科版)》 CAS 北大核心 2019年第4期317-325,330,共10页
主要考虑在复双曲双面格拉斯曼SU2,m/S(U2U m),m≥2中的实超曲面的复曲率张量中引入*-Ricci张量。我们首先证明了SU2,m/S(U2U m)的Hopf超曲面上不存在*-Einstein度量。作为*-Einstein度量的一个推广,我们引入了*-Ricci孤立子,并证明了... 主要考虑在复双曲双面格拉斯曼SU2,m/S(U2U m),m≥2中的实超曲面的复曲率张量中引入*-Ricci张量。我们首先证明了SU2,m/S(U2U m)的Hopf超曲面上不存在*-Einstein度量。作为*-Einstein度量的一个推广,我们引入了*-Ricci孤立子,并证明了一个具有*-Ricci孤立子的实超曲面的位势场是Reeb矢量场,是SU2,m/S(U2U m)中全测地子流行SU2,m-1/S(U2U m-1)管状领域的一部分或者是一个无穷远处的中心是奇异的极限球面。最后,我们研究了一个具有伪反交换*-Ricci张量的Hopf超曲面。 展开更多
关键词 *-ricci 伪反交换*-ricci *-Einstein Hopf超曲面 复双平面格拉斯曼 *-ricci孤立子
下载PDF
Some Growth Rates of Certain Holomorphic Maps
2
作者 YANGQiao QIUJing-hua 《Chinese Quarterly Journal of Mathematics》 CSCD 2003年第3期258-263,共6页
In this paper we discuss some properties of h olomorphic maps between Kahler manifolds with certain curvature restrictions.
关键词 Hermitian metric holomorphic maps energy density
下载PDF
On Two Conjectures Concerning the Veronese Generating submanifolds
3
作者 宋鸿藻 胡泽军 《Chinese Quarterly Journal of Mathematics》 CSCD 1993年第2期17-21,共5页
The notion of finite type submanifolds was introduced by B. Y. Chen. In this paper the conjectures on scalar curvature of Veronese generating submanifolds in E~σ and the minimal conjecture on Veronese space-like subm... The notion of finite type submanifolds was introduced by B. Y. Chen. In this paper the conjectures on scalar curvature of Veronese generating submanifolds in E~σ and the minimal conjecture on Veronese space-like submanifold Σ and Veronese pseudo-Riemannian submanifold in E_1~σ are proved. We have Σ is minimal in H^5. is minimal in S_1~5, Σ and are of 1-type in E_1~σ. 展开更多
关键词 Finite Type Submanifolds Minimal Submanifolds Veronese Generating Submanifolds.
下载PDF
A Class of Homogeneous Einstein Manifolds
4
作者 Yifang KANG Ke LIANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2006年第4期411-418,共8页
A Riemannian manifold (M, g) is called Einstein manifold if its Ricci tensor satisfies r=c.g for some constant c. General existence results are hard to obtain, e.g., it is as yet unknown whether every compact manifo... A Riemannian manifold (M, g) is called Einstein manifold if its Ricci tensor satisfies r=c.g for some constant c. General existence results are hard to obtain, e.g., it is as yet unknown whether every compact manifold admits an Einstein metric. A natural approach is to impose additional homogeneous assumptions. M. Y. Wang and W. Ziller have got some results on compact homogeneous space G/H. They investigate standard homogeneous metrics, the metric induced by Killing form on G/H, and get some classification results. In this paper some more general homogeneous metrics on some homogeneous space G/H are studies, and a necessary and sufficient condition for this metric to be Einstein is given. The authors also give some examples of Einstein manifolds with non-standard homogeneous metrics. 展开更多
关键词 Einstein manifold Homogeneous space General homogeneous metric
原文传递
Evolution Equations of Curvature Tensors Along the Hyperbolic Geometric Flow
5
作者 Weijun LU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2014年第6期955-968,共14页
The author considers the hyperbolic geometric flow introduced by Kong and Liu. Using the techniques and ideas to deal with the evolution equations along the Ricci flow by Brendle, the author derives the global forms... The author considers the hyperbolic geometric flow introduced by Kong and Liu. Using the techniques and ideas to deal with the evolution equations along the Ricci flow by Brendle, the author derives the global forms of evolution equations for Levi-Civita connection and curvature tensors under the hyperbolic geometric flow. In addition, similarly to the Ricci flow case, it is shown that any solution to tile hyperbolic geometric flow that develops a singularity in finite time has unbounded Ricci curvature. 展开更多
关键词 Hyperbolic geometric flow Evolution equations SINGULARITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部