A ring R is said to be satisfying P-stable range provided that whenever aR + bR = R, there exists y ∈ P(R) such that a + by is a unit of R, where P(R) is the subset of R which satisfies the property that up, pu...A ring R is said to be satisfying P-stable range provided that whenever aR + bR = R, there exists y ∈ P(R) such that a + by is a unit of R, where P(R) is the subset of R which satisfies the property that up, pu∈ P(R) for every unit u of R and p ∈P(R). By studying this ring, some known results of rings satisfying unit-1 stable range, ( S, 2) -stable range, weakly unit 1- stable range and stable range one are unified. An element of a ring is said to be UR if it is the sum of a unit and a regular dement and a ring is said to be satisfying UR-stable range if R has P-stable range and P(R) is the set of all UR-elements of R, Some properties of this ring are studied and it is proven that if R satisfies UR-stahle range then so does any n × n matrix ring over R.展开更多
A ring is said to be UR if every element can be written as the sum of a unit and a regular element. These rings are shown to be a unifying generalization of regular rings, clean rings and (S, 2)-ring~. Some relation...A ring is said to be UR if every element can be written as the sum of a unit and a regular element. These rings are shown to be a unifying generalization of regular rings, clean rings and (S, 2)-ring~. Some relations of these rings are studied and several properties of clean rings and (S, 2)-rings are extended. PAng extensions of UR-rings are also investigated.展开更多
基金Foundation items:The National Natural Science Foundation of China (No.10571026)the Specialized Research Fund for the Doctoral Program ofHigher Education (No.20060286006)
文摘A ring R is said to be satisfying P-stable range provided that whenever aR + bR = R, there exists y ∈ P(R) such that a + by is a unit of R, where P(R) is the subset of R which satisfies the property that up, pu∈ P(R) for every unit u of R and p ∈P(R). By studying this ring, some known results of rings satisfying unit-1 stable range, ( S, 2) -stable range, weakly unit 1- stable range and stable range one are unified. An element of a ring is said to be UR if it is the sum of a unit and a regular dement and a ring is said to be satisfying UR-stable range if R has P-stable range and P(R) is the set of all UR-elements of R, Some properties of this ring are studied and it is proven that if R satisfies UR-stahle range then so does any n × n matrix ring over R.
基金the National -Natural Science Foundation of China (No. 10571026) the Natural Science Foundation of Jiangsu Province (No. 2005207).
文摘A ring is said to be UR if every element can be written as the sum of a unit and a regular element. These rings are shown to be a unifying generalization of regular rings, clean rings and (S, 2)-ring~. Some relations of these rings are studied and several properties of clean rings and (S, 2)-rings are extended. PAng extensions of UR-rings are also investigated.