The development of quantum optics theory based on the method of integration within an ordered product of operators(IWOP)has greatly stimulated the study of quantum states in the light field,especially non-Gaussian sta...The development of quantum optics theory based on the method of integration within an ordered product of operators(IWOP)has greatly stimulated the study of quantum states in the light field,especially non-Gaussian states with various non-classical properties.In this paper,the two-mode squeezing operator is derived with integral theory within the Weyl ordering product of operators using a combinatorial field in which one mode is a chaotic field and the other mode is a vacuum field.The density operator of the new light field,its entanglement property and photon number distribution are analyzed.We also note that tracing a three-mode pure state can yield this new light field.These methods represent a theoretical approach to investigating new density operators of light fields.展开更多
To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive t...To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.展开更多
By introducing the s-parameterized generalized Wigner operator into phase-space quantum mechanics we invent the technique of integration within s-ordered product of operators (which considers normally ordered, antino...By introducing the s-parameterized generalized Wigner operator into phase-space quantum mechanics we invent the technique of integration within s-ordered product of operators (which considers normally ordered, antinormally ordered and Weyl ordered product of operators as its special cases). The s-ordered operator expansion (denoted by s…s ) formula of density operators is derived, which isρ=2/1-s∫d^2β/π〈-β|ρ|β〉sexp{2/s-1(s|β|^2-β*α+βa-αα)}s The s-parameterized quantization scheme is thus completely established.展开更多
By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials wh...By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.展开更多
We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Herm...We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.展开更多
By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable ...By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable Hermite polynomials.Its application in deriving the normalization for some quantum optical states is presented.展开更多
We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process ca...We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process can be considered a quantum controlling scheme through photon addition.展开更多
In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechani...In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform.The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too.In this paper,the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators(IWOP)are used to establish the entanglement fractional Fourier transform theory to the extent of quantum.A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.展开更多
Let H be a complex Hilbert space with dimH ≥3, Bs(H) the (real) Jordan algebra of all self-adjoint operators on H. Every surjective map Ф : Bs(H)→13s(H) preserving numerical radius of operator products (r...Let H be a complex Hilbert space with dimH ≥3, Bs(H) the (real) Jordan algebra of all self-adjoint operators on H. Every surjective map Ф : Bs(H)→13s(H) preserving numerical radius of operator products (respectively, Jordan triple products) is characterized. A characterization of surjective maps on Bs (H) preserving a cross operator norm of operator products (resp. Jordan triple products of operators) is also given.展开更多
For the first time,we derive the compact forms of normalization factors for photon-added(-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of o...For the first time,we derive the compact forms of normalization factors for photon-added(-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of operators(IWOP) technique.It is found that these two factors are related to the Jacobi polynomials.In addition,some new relationships for Jacobi polynomials are presented.展开更多
We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transfo...We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transformation kernel. The EFFT's additivity property is proved and the eigenmode of EFFT is derived. As an application, we calculate the EFFT of the three-mode squeezed vacuum state.展开更多
The evolution of a pure coherent state into a chaotic state is described very well by a master equation, as is validated via an examination of the coherent state's evolution during the diffusion process, fully utiliz...The evolution of a pure coherent state into a chaotic state is described very well by a master equation, as is validated via an examination of the coherent state's evolution during the diffusion process, fully utilizing the technique of integration within an ordered product (IWOP) of operators. The same equation also describes a limitation that maintains the coherence in a weak diffusion process, i.e., when the dissipation is very weak and the initial average photon number is large. This equation is dp/dt = -κ[a+ap -a+pa -apa+ + paa+]. The physical difference between this diffusion equation and the better-known amplitude damping master equation is pointed out.展开更多
1. Introduction In quantum optics, optical frequency conversion is a typical nonlinear process and is worth studying, for example, a second harmonic frequency generation will generate a squeezed state.[1'2l In this ...1. Introduction In quantum optics, optical frequency conversion is a typical nonlinear process and is worth studying, for example, a second harmonic frequency generation will generate a squeezed state.[1'2l In this work, we tackle the evolution of an initial coherent state in a Raman dispersion process which is also a nonlinear process. The process involves the inelastic scattering of a pho- ton when it is incident on a molecule. The photon loses some of its energy to the molecule or gains some from it, and so leaves the molecule with a lower or a higher frequency. The lower frequency components of the scattered radiation are called the Stokes lines and the higher frequency components are called the anti- Stokes lines. The Hamiltonian governing its dynamics is[3]展开更多
By using the intermediate coordinate-momentum representation in quantum optics and generating function for the normalization of the excited squeezed vacuum state (ESVS), the normalized ESVS is obtained. We find that...By using the intermediate coordinate-momentum representation in quantum optics and generating function for the normalization of the excited squeezed vacuum state (ESVS), the normalized ESVS is obtained. We find that its normalization constants obtained via two new methods are uniform and a new form which is different from the result obtained by Zhang and Fan [Phys. Lett. A 165 (1992) 14]. By virtue of the normalization constant of the ESVS and the intermediate coordinate-momentum representation, the tomogram of the normalized ESVS and some useful formulae are derived.展开更多
Based on the theory of integration within s-ordering of operators and the bipartite entangled state representation we introduce s-parameterized Weyl-Wigner correspondence in the entangled form. Some of its application...Based on the theory of integration within s-ordering of operators and the bipartite entangled state representation we introduce s-parameterized Weyl-Wigner correspondence in the entangled form. Some of its applications in quantum optics theory are presented as well.展开更多
Following the spirit of thermo field dynamics initiated by Takahashi and Umezawa, we employ the technique of integration within an ordered product of operators to derive the thermal vacuum state (TVS) for the Hamilt...Following the spirit of thermo field dynamics initiated by Takahashi and Umezawa, we employ the technique of integration within an ordered product of operators to derive the thermal vacuum state (TVS) for the Hamiltonian H of the two-coupled-oscillator model. The ensemble averages of the system are derived conveniently by using the TVS. In addition, the entropy for this system is discussed based on the relation between the generalized Hellmann-Feynman theorem and the entroy variation in the context of the TVS.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11775208)the Foundation for Young Talents in College of Anhui Province,China(Grant Nos.gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.KJ2020A0638 and 2022AH051586)。
文摘The development of quantum optics theory based on the method of integration within an ordered product of operators(IWOP)has greatly stimulated the study of quantum states in the light field,especially non-Gaussian states with various non-classical properties.In this paper,the two-mode squeezing operator is derived with integral theory within the Weyl ordering product of operators using a combinatorial field in which one mode is a chaotic field and the other mode is a vacuum field.The density operator of the new light field,its entanglement property and photon number distribution are analyzed.We also note that tracing a three-mode pure state can yield this new light field.These methods represent a theoretical approach to investigating new density operators of light fields.
基金Project supported by the Foundation for Young Talents in College of Anhui Province, China (Grant Nos. gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions, China (Grant Nos. 2022AH051580 and 2022AH051586)。
文摘To conveniently calculate the Wigner function of the optical cumulant operator and its dissipation evolution in a thermal environment, in this paper, the thermo-entangled state representation is introduced to derive the general evolution formula of the Wigner function, and its relation to Weyl correspondence is also discussed. The method of integration within the ordered product of operators is essential to our discussion.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174)
文摘By introducing the s-parameterized generalized Wigner operator into phase-space quantum mechanics we invent the technique of integration within s-ordered product of operators (which considers normally ordered, antinormally ordered and Weyl ordered product of operators as its special cases). The s-ordered operator expansion (denoted by s…s ) formula of density operators is derived, which isρ=2/1-s∫d^2β/π〈-β|ρ|β〉sexp{2/s-1(s|β|^2-β*α+βa-αα)}s The s-parameterized quantization scheme is thus completely established.
基金supported by the National Natural Science Foundation of China(Grant No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.
基金Project supported by the National Natural Science Foundation of China(Grnat No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.
基金Project supported by the National Natural Science Foundation of China(Grant No.11175113)
文摘By virtue of the operator Hermite polynomial method and the technique of integration within the ordered product of operators we derive a new kind of special function, which is closely related to one- and two-variable Hermite polynomials.Its application in deriving the normalization for some quantum optical states is presented.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB922103)the National Natural Science Foundation of China(Grant Nos.11175113,11274104,and 11404108)the Natural Science Foundation of Hubei Province,China(Grant No.2011CDA021)
文摘We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process can be considered a quantum controlling scheme through photon addition.
基金Project supported by the National Natural Science Foundation of China(Grant No.11775208)the Foundation for Young Talents at the College of Anhui Province,China(Grant Nos.gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.KJ2020A0638 and 2022AH051586)。
文摘In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform.The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too.In this paper,the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators(IWOP)are used to establish the entanglement fractional Fourier transform theory to the extent of quantum.A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.
基金Supported by National Science Foundation of China (Grant Nos. 10771157, 10871111)the Provincial Science Foundation of Shanxi (Grant No. 2007011016)the Research Fund of Shanxi for Returned Scholars (Grant No. 2007-38)
文摘Let H be a complex Hilbert space with dimH ≥3, Bs(H) the (real) Jordan algebra of all self-adjoint operators on H. Every surjective map Ф : Bs(H)→13s(H) preserving numerical radius of operator products (respectively, Jordan triple products) is characterized. A characterization of surjective maps on Bs (H) preserving a cross operator norm of operator products (resp. Jordan triple products of operators) is also given.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11264018 and 60978009)the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023)+1 种基金the National Basic Research Project of China (Grant No. 2011CBA00200)the Young Talents Foundation of Jiangxi Normal University,China
文摘For the first time,we derive the compact forms of normalization factors for photon-added(-subtracted) two-mode squeezed thermal states by using the P-representation and the integration within an ordered product of operators(IWOP) technique.It is found that these two factors are related to the Jacobi polynomials.In addition,some new relationships for Jacobi polynomials are presented.
基金Project supported by the Specialized Research Fund for Doctoral Program of High Education of Chinathe National Natural Science Foundation of China (Grant Nos. 10874174 and 10947017/A05)
文摘We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transformation kernel. The EFFT's additivity property is proved and the eigenmode of EFFT is derived. As an application, we calculate the EFFT of the three-mode squeezed vacuum state.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB922103)the National Natural Science Foundation of China(GrantNos.11175113 and 11274104)the Natural Science Foundation of Hubei Province of China(Grant No.2011CDA021)
文摘The evolution of a pure coherent state into a chaotic state is described very well by a master equation, as is validated via an examination of the coherent state's evolution during the diffusion process, fully utilizing the technique of integration within an ordered product (IWOP) of operators. The same equation also describes a limitation that maintains the coherence in a weak diffusion process, i.e., when the dissipation is very weak and the initial average photon number is large. This equation is dp/dt = -κ[a+ap -a+pa -apa+ + paa+]. The physical difference between this diffusion equation and the better-known amplitude damping master equation is pointed out.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10775097 and 10475056)
文摘1. Introduction In quantum optics, optical frequency conversion is a typical nonlinear process and is worth studying, for example, a second harmonic frequency generation will generate a squeezed state.[1'2l In this work, we tackle the evolution of an initial coherent state in a Raman dispersion process which is also a nonlinear process. The process involves the inelastic scattering of a pho- ton when it is incident on a molecule. The photon loses some of its energy to the molecule or gains some from it, and so leaves the molecule with a lower or a higher frequency. The lower frequency components of the scattered radiation are called the Stokes lines and the higher frequency components are called the anti- Stokes lines. The Hamiltonian governing its dynamics is[3]
基金The project supported by National Natural Science Foundation of China under Grant No. 10574060 and the Natural Science Foundation of Shandong Provirice of China under Grant No. Y2004A09
文摘By using the intermediate coordinate-momentum representation in quantum optics and generating function for the normalization of the excited squeezed vacuum state (ESVS), the normalized ESVS is obtained. We find that its normalization constants obtained via two new methods are uniform and a new form which is different from the result obtained by Zhang and Fan [Phys. Lett. A 165 (1992) 14]. By virtue of the normalization constant of the ESVS and the intermediate coordinate-momentum representation, the tomogram of the normalized ESVS and some useful formulae are derived.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10775097 and 10874174)the President Foundation of the Chinese Academy of Sciences
文摘Based on the theory of integration within s-ordering of operators and the bipartite entangled state representation we introduce s-parameterized Weyl-Wigner correspondence in the entangled form. Some of its applications in quantum optics theory are presented as well.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11175113 and 11264018)the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20132BAB212006, 20114BAB202004, and 2009GZW0006)+1 种基金the Research Foundation of the Education Department of Jiangxi Province, China (Grant No. GJJ12171)the Open Foundation of the Key Laboratory of Optoelectronic and Telecommunication of Jiangxi Province, China (Grant No. 2013004)
文摘Following the spirit of thermo field dynamics initiated by Takahashi and Umezawa, we employ the technique of integration within an ordered product of operators to derive the thermal vacuum state (TVS) for the Hamiltonian H of the two-coupled-oscillator model. The ensemble averages of the system are derived conveniently by using the TVS. In addition, the entropy for this system is discussed based on the relation between the generalized Hellmann-Feynman theorem and the entroy variation in the context of the TVS.