To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ...To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.展开更多
In the digital era,emojis have enriched the way people communicate and research on emojis explosively increased in recent years.However,few noticed their functions from the neurocognitive perspective,especially their ...In the digital era,emojis have enriched the way people communicate and research on emojis explosively increased in recent years.However,few noticed their functions from the neurocognitive perspective,especially their similarities and differences with facial expressions in traditional face-to-face communication.To fill this gap,we conducted a Meta-analysis with 25 independent effect sizes from previous experimental studies.The present study shows that emojis have slight advantages in processing efficiency,which might be attributed to their simplicity in design,namely the omission of complex facial features,but the difference between emoji and face processing is not significant.In addition,emotional valence and experimental methods do not have significant influences,which suggests that emojis are equally effective as human faces in emotional expression.The current research contributes to the knowledge in digital communication and the crucial role played by emojis therein.展开更多
To study the rock deformation with three- dimensional model under rolling forces of disc cutter, by car- rying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior u...To study the rock deformation with three- dimensional model under rolling forces of disc cutter, by car- rying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior under rolling disc cutter is studied, the mechanical model of disc cutter rolling around the groove is established, and the the- ory of single-point and double-angle variables is proposed. Based on this theory, the physics equations and geometric equations of rock mechanical behavior under disc cutters of tunnel boring machine (TBM) are studied, and then the bal- ance equations of interactive forces between disc cutter and rock are established. Accordingly, formulas about normal force, rolling force and side force of a disc cutter are de- rived, and their validity is studied by tests. Therefore, a new method and theory is proposed to study rock- breaking mech- anism of disc cutters.展开更多
To improve the cutting performance of an hourglass worm gear hob and the accuracy of the resulting worm gear,the rake angles of the teeth on the pitch circle should be reduced.A method of forming the spiral flutes by ...To improve the cutting performance of an hourglass worm gear hob and the accuracy of the resulting worm gear,the rake angles of the teeth on the pitch circle should be reduced.A method of forming the spiral flutes by using a variable transmission ratio was developed.This method ensures that the rake angles on the indexing torus of each tooth are approximately 0°.Based on the gear meshing theory and the hourglass worm forming method,the discretization mathematical model of the rake face of a planar double enveloping worm gear hob was established by using cylindrical generating surface,and the feed parameters for machining the rake face for a variable transmission ratio were obtained.The spiral flute was simulated and the hob was machined on a four axis CNC milling machine.A contourgraph was used to measure the rake angle.The measurement results showed that the proposed method can reduce the absolute value of the rake angle on both sides of the cutting teeth,which can be used for machining the spiral flute rake face of an hourglass worm gear hob.展开更多
In order to meet engineering needs of Chinese underground coal mines,a new dust-collecting fan,a device of dust separated by centrifugal force in driven cyclone passageway(DCCP)was designed.In centrifugal dust removal...In order to meet engineering needs of Chinese underground coal mines,a new dust-collecting fan,a device of dust separated by centrifugal force in driven cyclone passageway(DCCP)was designed.In centrifugal dust removal section(CDRS)of DCCP,a general equation is derived from the principle of force equilibrium.According to CDRS structure parameters and fan running parameters,the general equation is simplified,and the simplest equation is calculated numerically by MATLAB.The calculation results illustrate that increasing quantity of air current is against dust removal,but it is beneficial to dust removal by increasing the radius of driven spiral blade and increasing the particle diameter of coal dust.The conclusions show that the dust-collecting structure parameters coupled with the fan running parameters is a novel optimization approach to dust-collection fan for working and heading faces,which is especially suitable for Chinese underground mines.展开更多
To determine the rational layout parameters of the lateral high drainage roadway(LHDR) serving for two adjacent working faces, a mechanical model of the LHDR under mining influence was established, and the overburden ...To determine the rational layout parameters of the lateral high drainage roadway(LHDR) serving for two adjacent working faces, a mechanical model of the LHDR under mining influence was established, and the overburden fissure, mining-induced stress distribution rules were analyzed. First, the development characteristics of mining-induced overburden fissure and the stress distribution law of the upper section of the working face were analyzed. Second, by analyzing the distribution law of vertical stress at different layers, the lateral distance of the LHDR was determined as 25 m. Third, by analyzing the surrounding rock deformation effect, stress distribution law, and overburden fissure distribution law of the LHDR at the heights of 20, 25, and 30 m away from the roof, the rational horizon of the LHDR was determined to be 25 m. Finally, an example of a LHDR located 25 m above the roof of the No. 2 coal seam and 25 m away from the No. 2-603 working face was presented. Results show that when the No. 2-603 coalface is being mined, the surrounding rocks lag 80 m or even further and the working face tends to be stable. The relative deformations of the roof and floor of the roadway and both of its walls were 583 and 450 mm,respectively. The reduction rate of the roadway section was 21.52%–25.32%. The section of the roadway was sufficient to extract the pressure relief gas in the overburden of the No. 2-605 working face. The average gas concentration and the pure volume at the branch pipeline were 24.8% and 22.3 m^3/min,respectively, showing that the position of high-level boreholes was reasonable.展开更多
According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-con...According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-connection between Visual Basic (VB) and Excel to exchange data, uses Component Object Model (COM) component of MATLAB to plot charts of the three zones and to export the corresponding coordinates of the isolines. An example shows that this software is convenient and simple. By using it, the three zones can be easily determined. The software is convenient in studies and analyses of the three zones in goaf.展开更多
In the background of the technology condition and the geological condition of the 1151(3) fully mechanized top-coal caving face (FMTC face), and by means of taking nonlinear 3D numerical simulation, the stress red...In the background of the technology condition and the geological condition of the 1151(3) fully mechanized top-coal caving face (FMTC face), and by means of taking nonlinear 3D numerical simulation, the stress redistribution rules of top coal with different thick coal seam were obtained by investigation on the numerical simulation of the redistributions of the stress with different coal seam's thickness. The research showes that there exists a certain difference on the stress distributions of the top coal at face, the maximum principal stress is located near to the tailentry's corner. The vertical stress's peak of the top coal decreases and the distance ahead of face position increases as the once mining thickness of the coal seam increases. At the same coal seam, the vertical stresses' peak of top coal gradually decreases from the top to the bottom, the peak's position is basically the same and its changes are gradually obvious with the thickness of coal seam increas- ing. The vertical stress of top coal places in a low stress state at a certain range ahead of face and over the face, which reveals the essence that the support loads are generally low under the condition of FMTC. The study supplies the theoretical foundation for the support design and selection, the theory of top coal's fragmentation, the movement rules of top coal and improving the recovery of top coal.展开更多
To make a better understanding of the mechanical characteristics of the surrounding rocks in the tailentry and headentry with different coal seam thickness at fully mechanized top-coal caving face (FMTC face), the s...To make a better understanding of the mechanical characteristics of the surrounding rocks in the tailentry and headentry with different coal seam thickness at fully mechanized top-coal caving face (FMTC face), the stress transition and displacement around the periphery of the gateways with different coal thicknesses were investigated in details by means of in situ measurement and 3-D numerical simulation. The research shows that the stresses decrease in the two spallings of the headentry and floor at goal with the increase in mining thickness. The roof pressure in the gates does not change obviously with the coal thickness, but the thicker the coal seam is, the farther the maximum stress will apply to the coal rib at the working face. The vertical stress is higher than the horizontal stress at two spallings of the gate, while its horizontal stress is higher than the vertical stress at the roof. The relative displacement between the roof and floor and the two spallings in the gateways increases gradually with the increase in coal seam thickness in a definite range in front of the face. Near the mining face, the stress decreases in the surrounding rock of the gates, while the deformation appears the most intensive. It is proposed that the support concept to the tailentry and headentry should be changed from loading control to deformation control.展开更多
1.Introduction Spectacular advances have been made in the atmospheric sciences on a global level during a period of one hundred years or more,which is arguably most evident through"the quiet revolution of numeric...1.Introduction Spectacular advances have been made in the atmospheric sciences on a global level during a period of one hundred years or more,which is arguably most evident through"the quiet revolution of numerical weather prediction"(Bauer et展开更多
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita...Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.展开更多
This past year the International Finance Forum(IFF)2022 Spring Meetings have been held online.The meetings adopted the theme of The New Global Landscape:Challenges and Responses,designed to discuss the policy measures...This past year the International Finance Forum(IFF)2022 Spring Meetings have been held online.The meetings adopted the theme of The New Global Landscape:Challenges and Responses,designed to discuss the policy measures to cope with international economic challenges as the COVID-19 pandemic keeps spreading around the world.Around discussions about the subject of the World Economic Outlook and Challenges,participants felt deeply worried about the global economic development under the impact of the COVID-19 pandemic,the Russia-Ukraine conflict and global inflation.展开更多
This paper presents a direct method to find the internal faces. It uses four sets of information: get the coordinates of each point on the 3D composite objects; (~)based on the 3D coordinates to calculate all the p...This paper presents a direct method to find the internal faces. It uses four sets of information: get the coordinates of each point on the 3D composite objects; (~)based on the 3D coordinates to calculate all the plane equation of two objects; (~)calculate all the intersecting lines of the two objects and exclude the intersecting lines which are not within the scope of the plane;finding the internal face, the remaining intersecting lines formed the plane is the internal face of the two objects. We proposed a new algorithm for finding internal faces. This algorithm could be adapted to any regular composite objects .The algorithm works well for finding internal faces.展开更多
Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the sim...Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the similarity to the person being modeled.This study presents a novel framework for generating animatable 3D cartoon faces from a single portrait image.Methods First,we transferred an input real-world portrait to a stylized cartoon image using StyleGAN.We then proposed a two-stage reconstruction method to recover a 3D cartoon face with detailed texture.Our two-stage strategy initially performs coarse estimation based on template models and subsequently refines the model by nonrigid deformation under landmark supervision.Finally,we proposed a semantic-preserving face-rigging method based on manually created templates and deformation transfer.Conclusions Compared with prior arts,the qualitative and quantitative results show that our method achieves better accuracy,aesthetics,and similarity criteria.Furthermore,we demonstrated the capability of the proposed 3D model for real-time facial animation.展开更多
基金Project([2018]3010)supported by the Guizhou Provincial Science and Technology Major Project,China。
文摘To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.
基金supported by Science Foundation of China University of Petroleum,Beijing(No.2462023YXZZ006)Undergraduate Key Teaching Reform Project(30GK2312).
文摘In the digital era,emojis have enriched the way people communicate and research on emojis explosively increased in recent years.However,few noticed their functions from the neurocognitive perspective,especially their similarities and differences with facial expressions in traditional face-to-face communication.To fill this gap,we conducted a Meta-analysis with 25 independent effect sizes from previous experimental studies.The present study shows that emojis have slight advantages in processing efficiency,which might be attributed to their simplicity in design,namely the omission of complex facial features,but the difference between emoji and face processing is not significant.In addition,emotional valence and experimental methods do not have significant influences,which suggests that emojis are equally effective as human faces in emotional expression.The current research contributes to the knowledge in digital communication and the crucial role played by emojis therein.
基金supported by the National Natural Science Foundation of China (51075147)
文摘To study the rock deformation with three- dimensional model under rolling forces of disc cutter, by car- rying out the circular-grooving test with disc cutter rolling around on the rock, the rock mechanical behavior under rolling disc cutter is studied, the mechanical model of disc cutter rolling around the groove is established, and the the- ory of single-point and double-angle variables is proposed. Based on this theory, the physics equations and geometric equations of rock mechanical behavior under disc cutters of tunnel boring machine (TBM) are studied, and then the bal- ance equations of interactive forces between disc cutter and rock are established. Accordingly, formulas about normal force, rolling force and side force of a disc cutter are de- rived, and their validity is studied by tests. Therefore, a new method and theory is proposed to study rock- breaking mech- anism of disc cutters.
基金supported by the National Natural Science Foundation of China (No. 51475460)
文摘To improve the cutting performance of an hourglass worm gear hob and the accuracy of the resulting worm gear,the rake angles of the teeth on the pitch circle should be reduced.A method of forming the spiral flutes by using a variable transmission ratio was developed.This method ensures that the rake angles on the indexing torus of each tooth are approximately 0°.Based on the gear meshing theory and the hourglass worm forming method,the discretization mathematical model of the rake face of a planar double enveloping worm gear hob was established by using cylindrical generating surface,and the feed parameters for machining the rake face for a variable transmission ratio were obtained.The spiral flute was simulated and the hob was machined on a four axis CNC milling machine.A contourgraph was used to measure the rake angle.The measurement results showed that the proposed method can reduce the absolute value of the rake angle on both sides of the cutting teeth,which can be used for machining the spiral flute rake face of an hourglass worm gear hob.
基金supported by the National Natural Science Foundation of China and Shenhua Group Corpo-ration Limited(U1361118)the Hunan Provincial Natural Science Foundation of China(13JJ8016)+2 种基金the State Key Laboratory for GeoMechanics and Deep Underground Engineering(SKLG-DUEK1018)the Open Research Fund Program of Hunan Province Key Laboratory of Safe Mining Techniques of Coal Mines(Hunan University of Science and Technology)(201105)the Project of Outstanding(Postgraduate)Dissertation Growth Foundation of HNUST(SNY005).
文摘In order to meet engineering needs of Chinese underground coal mines,a new dust-collecting fan,a device of dust separated by centrifugal force in driven cyclone passageway(DCCP)was designed.In centrifugal dust removal section(CDRS)of DCCP,a general equation is derived from the principle of force equilibrium.According to CDRS structure parameters and fan running parameters,the general equation is simplified,and the simplest equation is calculated numerically by MATLAB.The calculation results illustrate that increasing quantity of air current is against dust removal,but it is beneficial to dust removal by increasing the radius of driven spiral blade and increasing the particle diameter of coal dust.The conclusions show that the dust-collecting structure parameters coupled with the fan running parameters is a novel optimization approach to dust-collection fan for working and heading faces,which is especially suitable for Chinese underground mines.
基金National Key Basic Research Program of China (973 Program) (No. 2015CB251600)the National Natural Science Foundation of China (Nos. 51327007, 51174157, and 51104118) for their support of this project
文摘To determine the rational layout parameters of the lateral high drainage roadway(LHDR) serving for two adjacent working faces, a mechanical model of the LHDR under mining influence was established, and the overburden fissure, mining-induced stress distribution rules were analyzed. First, the development characteristics of mining-induced overburden fissure and the stress distribution law of the upper section of the working face were analyzed. Second, by analyzing the distribution law of vertical stress at different layers, the lateral distance of the LHDR was determined as 25 m. Third, by analyzing the surrounding rock deformation effect, stress distribution law, and overburden fissure distribution law of the LHDR at the heights of 20, 25, and 30 m away from the roof, the rational horizon of the LHDR was determined to be 25 m. Finally, an example of a LHDR located 25 m above the roof of the No. 2 coal seam and 25 m away from the No. 2-603 working face was presented. Results show that when the No. 2-603 coalface is being mined, the surrounding rocks lag 80 m or even further and the working face tends to be stable. The relative deformations of the roof and floor of the roadway and both of its walls were 583 and 450 mm,respectively. The reduction rate of the roadway section was 21.52%–25.32%. The section of the roadway was sufficient to extract the pressure relief gas in the overburden of the No. 2-605 working face. The average gas concentration and the pure volume at the branch pipeline were 24.8% and 22.3 m^3/min,respectively, showing that the position of high-level boreholes was reasonable.
文摘According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-connection between Visual Basic (VB) and Excel to exchange data, uses Component Object Model (COM) component of MATLAB to plot charts of the three zones and to export the corresponding coordinates of the isolines. An example shows that this software is convenient and simple. By using it, the three zones can be easily determined. The software is convenient in studies and analyses of the three zones in goaf.
文摘In the background of the technology condition and the geological condition of the 1151(3) fully mechanized top-coal caving face (FMTC face), and by means of taking nonlinear 3D numerical simulation, the stress redistribution rules of top coal with different thick coal seam were obtained by investigation on the numerical simulation of the redistributions of the stress with different coal seam's thickness. The research showes that there exists a certain difference on the stress distributions of the top coal at face, the maximum principal stress is located near to the tailentry's corner. The vertical stress's peak of the top coal decreases and the distance ahead of face position increases as the once mining thickness of the coal seam increases. At the same coal seam, the vertical stresses' peak of top coal gradually decreases from the top to the bottom, the peak's position is basically the same and its changes are gradually obvious with the thickness of coal seam increas- ing. The vertical stress of top coal places in a low stress state at a certain range ahead of face and over the face, which reveals the essence that the support loads are generally low under the condition of FMTC. The study supplies the theoretical foundation for the support design and selection, the theory of top coal's fragmentation, the movement rules of top coal and improving the recovery of top coal.
基金National Natural Science Foundation(50674003)National Science and Technology Supporting Program Key Item(Eleventh Five Year Program)(2006BAK03B06)National Basic Research Program(973 Program)(2005cb221503)
文摘To make a better understanding of the mechanical characteristics of the surrounding rocks in the tailentry and headentry with different coal seam thickness at fully mechanized top-coal caving face (FMTC face), the stress transition and displacement around the periphery of the gateways with different coal thicknesses were investigated in details by means of in situ measurement and 3-D numerical simulation. The research shows that the stresses decrease in the two spallings of the headentry and floor at goal with the increase in mining thickness. The roof pressure in the gates does not change obviously with the coal thickness, but the thicker the coal seam is, the farther the maximum stress will apply to the coal rib at the working face. The vertical stress is higher than the horizontal stress at two spallings of the gate, while its horizontal stress is higher than the vertical stress at the roof. The relative displacement between the roof and floor and the two spallings in the gateways increases gradually with the increase in coal seam thickness in a definite range in front of the face. Near the mining face, the stress decreases in the surrounding rock of the gates, while the deformation appears the most intensive. It is proposed that the support concept to the tailentry and headentry should be changed from loading control to deformation control.
基金Support for this study was provided by the “Waves to Weather” initiative (SFB/TRR 165) of the German Research Foundation (DFG)
文摘1.Introduction Spectacular advances have been made in the atmospheric sciences on a global level during a period of one hundred years or more,which is arguably most evident through"the quiet revolution of numerical weather prediction"(Bauer et
基金supported by the National Natural Science Foundation of China(Nos.52279107 and 52379106)the Qingdao Guoxin Jiaozhou Bay Second Submarine Tunnel Co.,Ltd.,the Academician and Expert Workstation of Yunnan Province(No.202205AF150015)the Science and Technology Innovation Project of YCIC Group Co.,Ltd.(No.YCIC-YF-2022-15)。
文摘Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality.
文摘This past year the International Finance Forum(IFF)2022 Spring Meetings have been held online.The meetings adopted the theme of The New Global Landscape:Challenges and Responses,designed to discuss the policy measures to cope with international economic challenges as the COVID-19 pandemic keeps spreading around the world.Around discussions about the subject of the World Economic Outlook and Challenges,participants felt deeply worried about the global economic development under the impact of the COVID-19 pandemic,the Russia-Ukraine conflict and global inflation.
文摘This paper presents a direct method to find the internal faces. It uses four sets of information: get the coordinates of each point on the 3D composite objects; (~)based on the 3D coordinates to calculate all the plane equation of two objects; (~)calculate all the intersecting lines of the two objects and exclude the intersecting lines which are not within the scope of the plane;finding the internal face, the remaining intersecting lines formed the plane is the internal face of the two objects. We proposed a new algorithm for finding internal faces. This algorithm could be adapted to any regular composite objects .The algorithm works well for finding internal faces.
文摘Background With the development of virtual reality(VR)technology,there is a growing need for customized 3D avatars.However,traditional methods for 3D avatar modeling are either time-consuming or fail to retain the similarity to the person being modeled.This study presents a novel framework for generating animatable 3D cartoon faces from a single portrait image.Methods First,we transferred an input real-world portrait to a stylized cartoon image using StyleGAN.We then proposed a two-stage reconstruction method to recover a 3D cartoon face with detailed texture.Our two-stage strategy initially performs coarse estimation based on template models and subsequently refines the model by nonrigid deformation under landmark supervision.Finally,we proposed a semantic-preserving face-rigging method based on manually created templates and deformation transfer.Conclusions Compared with prior arts,the qualitative and quantitative results show that our method achieves better accuracy,aesthetics,and similarity criteria.Furthermore,we demonstrated the capability of the proposed 3D model for real-time facial animation.