This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé...This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature.展开更多
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation...In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.展开更多
By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two ...By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two homogeneity equations to be solved, we obtainsome exact solutions containing single solitary waves.展开更多
In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit ...In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit exact solutions, which contain multiple soliton-like and periodic solutions, are obtained for the (2+1)-dimensional OGKP equation with variable coetffcients.展开更多
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equa...By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique.展开更多
With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transfor...With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.展开更多
Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation m...Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately.展开更多
The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of ...The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of Wronskian technique and the Pfaffian properties, Wronskian and Grammian solutions have been generated.展开更多
The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryf...The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryfunctions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types ofsolutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functionsappropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the numberof the peaks.展开更多
Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a cl...Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+l)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution).展开更多
The method of variable separation has always been regarded as a crucial method for solving nonlinear evolution equations.In this paper,we use a new form of variable separation to study novel soliton molecules and thei...The method of variable separation has always been regarded as a crucial method for solving nonlinear evolution equations.In this paper,we use a new form of variable separation to study novel soliton molecules and their interactions in(2+1)-dimensional potential Boiti–Leon-Manna–Pempinelli equation.Dromion molecules,ring molecules,lump molecules,multi-instantaneous molecules,and their interactions are obtained.Then we draw corresponding images with maple software to study their dynamic behavior.展开更多
For describing various complex nonlinear phenomena in the realistic world,the higher-dimensional nonlinearevolution equations appear more attractive in many fields of physical and engineering sciences.In this paper,by...For describing various complex nonlinear phenomena in the realistic world,the higher-dimensional nonlinearevolution equations appear more attractive in many fields of physical and engineering sciences.In this paper,by virtueof the Hirota bilinear method and Riemann theta functions,the periodic wave solutions for the(2+1)-dimensionalBoussinesq equation and(3+1)-dimensional Kadomtsev-Petviashvili(KP)equation are obtained.Furthermore,it isshown that the known soliton solutions for the two equations can be reduced from the periodic wave solutions.展开更多
A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contain...A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized.展开更多
The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary...The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary functions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types of solutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functions appropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the number of the peaks.展开更多
The integrability of the (2+l)-dimensional Broer-Kaup equation with variable coefficients (VCBK) is verified by finding a transformation mapping it to the usual (2+l)-dimensional Broer-Kaup equation (BK). Th...The integrability of the (2+l)-dimensional Broer-Kaup equation with variable coefficients (VCBK) is verified by finding a transformation mapping it to the usual (2+l)-dimensional Broer-Kaup equation (BK). Thus the solutions of the (2+1)-dimensional VCBK are obtained by making full use of the known solutions of the usual (2+1)dimensional IRK. Two new integrable models are given by this transformation, their dromion-like solutions and rogue wave solutions are also obtained. Further, the velocity of the dromion-like solutions can be designed and the center of the rogue wave solutions can be controlled artificially because of the appearance of the four arbitrary functions in the transformation.展开更多
In this paper, we will use a simple and direct method to obtain some particular solutions of (2+1)- dimensional and (3+ 1)-dimensional KP equation expressed in terms of the Kleinian hyperelliptic functions for a...In this paper, we will use a simple and direct method to obtain some particular solutions of (2+1)- dimensional and (3+ 1)-dimensional KP equation expressed in terms of the Kleinian hyperelliptic functions for a given curve y^2 = f(x) whose genus is three. We observe that this method generalizes the auxiliary method, and can obtain the hyperelliptic functions solutions.展开更多
Starting from the variable separation approach, the algebraic soliton solution and the solution describing the interaction between line soliton and algebraic soliton are obtained by selecting appropriate seed solution...Starting from the variable separation approach, the algebraic soliton solution and the solution describing the interaction between line soliton and algebraic soliton are obtained by selecting appropriate seed solution for (2+1)-dimensional ANNV equation. The behaviors of interactions are discussed in detail both analytically and graphically. It is shown that there are two kinds of singular interactions between line soliton and algebraic soliton: 1) the resonant interaction where the algebraic soliton propagates together with the line soliton and persists infinitely; 2) the extremely repulsive interaction where the algebraic soliton affects the motion of the line soliton infinitely apart.展开更多
To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kad...To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kadomtsev–Petviashvili(KP) equation, the(3+1)-dimensional generalized Kadomtsev–Petviashvili(g-KP) equation, and the B-type Kadomtsev–Petviashvili(BKP) equation. Aa a result, we obtain some new resonant multiple wave solutions through the parameterization for wave numbers and frequencies via some linear combinations of exponential traveling waves. Finally, these new resonant type solutions can be displayed in graphs to illustrate the resonant behaviors of multiple wave solutions.展开更多
This work aims to present nonlinear models that arise in ocean engineering.There are many models of ocean waves that are present in nature.In shallow water,the linearization of the equations requires critical conditio...This work aims to present nonlinear models that arise in ocean engineering.There are many models of ocean waves that are present in nature.In shallow water,the linearization of the equations requires critical conditions on wave capacity than it make in deep water,and the strong nonlinear belongings are spotted.We use Lie symmetry analysis to obtain different types of soliton solutions like one,two,and three-soliton solutions in a(2+1)dimensional variable-coefficient Bogoyavlensky Konopelchenko(VCBK)equation that describes the interaction of a Riemann wave reproducing along the y-axis and a long wave reproducing along the x-axis in engineering and science.We use the Lie symmetry analysis then the integrating factor method to obtain new solutions of the VCBK equation.To demonstrate the physical meaning of the solutions obtained by the presented techniques,the graphical performance has been demonstrated with some values.The presented equation has fewer dimensions and is reduced to ordinary differential equations using the Lie symmetry technique.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.11505090)Research Award Foundation for Outstanding Young Scientists of Shandong Province(Grant No.BS2015SF009)+2 种基金the Doctoral Foundation of Liaocheng University(Grant No.318051413)Liaocheng University Level Science and Technology Research Fund(Grant No.318012018)Discipline with Strong Characteristics of Liaocheng University–Intelligent Science and Technology(Grant No.319462208).
文摘This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.
文摘By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two homogeneity equations to be solved, we obtainsome exact solutions containing single solitary waves.
基金The project supported by the Natural Science Foundation of Shandong Province under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit exact solutions, which contain multiple soliton-like and periodic solutions, are obtained for the (2+1)-dimensional OGKP equation with variable coetffcients.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10672053)
文摘By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique.
基金supported by the Scientific Research Foundation of Beijing Information Science and Technology UniversityScientific Creative Platform Foundation of Beijing Municipal Commission of Education
文摘With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.
基金The author would like to thank Profs. Jie-Fang Zhang and Chun-Long Zheng for helpful discussions.
文摘Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately.
文摘The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of Wronskian technique and the Pfaffian properties, Wronskian and Grammian solutions have been generated.
基金The project supported by National Natural Science Foundation of China
文摘The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryfunctions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types ofsolutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functionsappropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the numberof the peaks.
基金Project supported by the National Natural Science Foundation of China (Grant No 10647112)the Foundation of Donghua University
文摘Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+l)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution).
基金the National Natural Science Foundation of China(Grant Nos.11371086,11671258,and 11975145)the Fund of Science and Technology Commission of Shanghai Municipality(Grant No.13ZR1400100)。
文摘The method of variable separation has always been regarded as a crucial method for solving nonlinear evolution equations.In this paper,we use a new form of variable separation to study novel soliton molecules and their interactions in(2+1)-dimensional potential Boiti–Leon-Manna–Pempinelli equation.Dromion molecules,ring molecules,lump molecules,multi-instantaneous molecules,and their interactions are obtained.Then we draw corresponding images with maple software to study their dynamic behavior.
基金supported by the National Natural Science Foundation of China under Grant Nos.60772023 and 60372095the Key Project of the Ministry of Education under Grant No.106033+3 种基金the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.SKLSDE-07-001Beijing University of Aeronautics and Astronauticsthe National Basic Research Program of China(973 Program)under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education of the Ministry of Education under Grant No.20060006024
文摘For describing various complex nonlinear phenomena in the realistic world,the higher-dimensional nonlinearevolution equations appear more attractive in many fields of physical and engineering sciences.In this paper,by virtueof the Hirota bilinear method and Riemann theta functions,the periodic wave solutions for the(2+1)-dimensionalBoussinesq equation and(3+1)-dimensional Kadomtsev-Petviashvili(KP)equation are obtained.Furthermore,it isshown that the known soliton solutions for the two equations can be reduced from the periodic wave solutions.
基金Foundation item: Supported by the National Natural Science Foundation of China(10647112, 10871040) Acknowledgement The authors are in debt to thank the helpful discussions with Prof Qin and Dr A P Deng.
文摘A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized.
文摘The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary functions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types of solutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functions appropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the number of the peaks.
基金Supported by the National Natural Science Foundation of China under Grant No.10971109K.C. Wong Magna Fund in Ningbo Universitythe Natural Science Foundation of Ningbo under Grant No.2011A610179
文摘The integrability of the (2+l)-dimensional Broer-Kaup equation with variable coefficients (VCBK) is verified by finding a transformation mapping it to the usual (2+l)-dimensional Broer-Kaup equation (BK). Thus the solutions of the (2+1)-dimensional VCBK are obtained by making full use of the known solutions of the usual (2+1)dimensional IRK. Two new integrable models are given by this transformation, their dromion-like solutions and rogue wave solutions are also obtained. Further, the velocity of the dromion-like solutions can be designed and the center of the rogue wave solutions can be controlled artificially because of the appearance of the four arbitrary functions in the transformation.
基金Supported by the National Key Basic Research Project of China under Grant No. 2004CB318000
文摘In this paper, we will use a simple and direct method to obtain some particular solutions of (2+1)- dimensional and (3+ 1)-dimensional KP equation expressed in terms of the Kleinian hyperelliptic functions for a given curve y^2 = f(x) whose genus is three. We observe that this method generalizes the auxiliary method, and can obtain the hyperelliptic functions solutions.
基金National Natural Science Foundation of China under Grant No.10675065the Science Research Foundation of the Education Department of Zhejiang Province under Grant No.20070979+1 种基金the Natural Science Foundation of Zhejiang Province under Grant No.Y604036the State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation\PLN0402
文摘Starting from the variable separation approach, the algebraic soliton solution and the solution describing the interaction between line soliton and algebraic soliton are obtained by selecting appropriate seed solution for (2+1)-dimensional ANNV equation. The behaviors of interactions are discussed in detail both analytically and graphically. It is shown that there are two kinds of singular interactions between line soliton and algebraic soliton: 1) the resonant interaction where the algebraic soliton propagates together with the line soliton and persists infinitely; 2) the extremely repulsive interaction where the algebraic soliton affects the motion of the line soliton infinitely apart.
基金Project supported by the Yue-Qi Scholar of the China University of Mining and Technology(Grant No.102504180004)the 333 Project of Jiangsu Province,China(Grant No.BRA2018320)
文摘To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kadomtsev–Petviashvili(KP) equation, the(3+1)-dimensional generalized Kadomtsev–Petviashvili(g-KP) equation, and the B-type Kadomtsev–Petviashvili(BKP) equation. Aa a result, we obtain some new resonant multiple wave solutions through the parameterization for wave numbers and frequencies via some linear combinations of exponential traveling waves. Finally, these new resonant type solutions can be displayed in graphs to illustrate the resonant behaviors of multiple wave solutions.
文摘This work aims to present nonlinear models that arise in ocean engineering.There are many models of ocean waves that are present in nature.In shallow water,the linearization of the equations requires critical conditions on wave capacity than it make in deep water,and the strong nonlinear belongings are spotted.We use Lie symmetry analysis to obtain different types of soliton solutions like one,two,and three-soliton solutions in a(2+1)dimensional variable-coefficient Bogoyavlensky Konopelchenko(VCBK)equation that describes the interaction of a Riemann wave reproducing along the y-axis and a long wave reproducing along the x-axis in engineering and science.We use the Lie symmetry analysis then the integrating factor method to obtain new solutions of the VCBK equation.To demonstrate the physical meaning of the solutions obtained by the presented techniques,the graphical performance has been demonstrated with some values.The presented equation has fewer dimensions and is reduced to ordinary differential equations using the Lie symmetry technique.