期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Interaction solutions and localized waves to the(2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
1
作者 闫鑫颖 刘锦洲 辛祥鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期199-205,共7页
This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé... This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method.The equation is proved to be Painlevé integrable by Painlevé analysis.On the basis of the bilinear form,the forms of two-soliton solutions,three-soliton solutions,and four-soliton solutions are studied specifically.The appropriate parameter values are chosen and the corresponding figures are presented.The breather waves solutions,lump solutions,periodic solutions and the interaction of breather waves solutions and soliton solutions,etc.are given.In addition,we also analyze the different effects of the parameters on the figures.The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions.These are important for describing water waves in nature. 展开更多
关键词 (2+1)-dimensional variable coefficient Hirota-Satsuma-Ito equation Hirota bilinear method long wave limit method N-soliton solutions
下载PDF
Symmetry Groups and New Exact Solutions to (2+1)-Dimensional Variable Coefficient Canonical Generalized KP Equation 被引量:7
2
作者 ZHANG Li-Hua LIU Xi-Qiang BAI Cheng-Lin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第3X期405-410,共6页
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation... In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation. 展开更多
关键词 2+1)-dimensional variable coefficient canonical generalized kp (VCCGkp equation modified CK's'direct method symmetry groups Lie symmetry similarity reductions new exact solutions
下载PDF
On an Auto-Baecklund Transformation for (2+1)-Dimensional VariableCoefficient Generalized KP Equations and Exact Solutions 被引量:1
3
作者 BAICheng-Jie BAICheng-Lin +1 位作者 HANJi-Guang ZHAOHong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第4期677-680,共4页
By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two ... By the application of the extended homogeneous balance method, we derive anauto-Backlund transformation (BT) for (2+1)-dimensional variable coefficient generalized KPequations. Based on the BT, in which there are two homogeneity equations to be solved, we obtainsome exact solutions containing single solitary waves. 展开更多
关键词 extended homogeneous balance method (2+1)-dimensional variable coefficientgeneralized kp equation auto-Baecklund transformation exact solutions
下载PDF
New Multiple Soliton-like and Periodic Solutions for (2+l)-Dimensional Canonical Generalized KP Equation with Variable Coefficients 被引量:3
4
作者 ZHANG Li-Hua LIU Xi-Qiang BAI Cheng-Lin 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第5X期793-798,共6页
In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit ... In this paper, the generalized ranch function method is extended to (2+1)-dimensianal canonical generalized KP (CGKP) equation with variable coetfficients. Taking advantage of the Riccati equation, many explicit exact solutions, which contain multiple soliton-like and periodic solutions, are obtained for the (2+1)-dimensional OGKP equation with variable coetffcients. 展开更多
关键词 2+1)-dimensional canonical generalized (CGkp equation with variable coefficients tanh function method Riccati equation soliton-like and periodic solutions
下载PDF
Solving (2+1)-dimensional sine-Poisson equation by a modified variable separated ordinary differential equation method 被引量:1
5
作者 苏卡林 谢元喜 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期40-48,共9页
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equa... By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique. 展开更多
关键词 modified variable separated ODE method 2 1-dimensional sine-Poisson equation explicit and exact solution
下载PDF
New Families of Rational Form Variable Separation Solutions to(2+1)-Dimensional Dispersive Long Wave Equations
6
作者 WEN Xiao-Yong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第5期789-793,共5页
With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transfor... With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions. 展开更多
关键词 improved mapping approach variable separation method 2+1)-dimensional dispersive long wave equations symbolic computation
下载PDF
A Series of Variable Separation Solutions and New Soliton Structures of (2+1)-Dimensional Korteweg-de Vries Equation
7
作者 XU Chang-Zhi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第3X期403-406,共4页
Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation m... Variable separation approach is introduced to solve the (2+1)-dimensional KdV equation. A series of variable separation solutions is derived with arbitrary functions in system. We present a new soliton excitation model (24). Based on this excitation, new soliton structures such as the multi-lump soliton and periodic soliton are revealed by selecting the arbitrary function appropriately. 展开更多
关键词 variable separation approach 2+1)-dimensional KdV equation new soliton excitation
下载PDF
Wronskian and Grammian Solutions for Generalized (n + 1)-Dimensional KP Equation with Variable Coefficients
8
作者 Hongwei Fu Yang Song Juan Xu 《Applied Mathematics》 2012年第2期154-157,共4页
The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of ... The generalized (n + 1)-dimensional KP equation with variable coefficients is investigated in this paper. The bilinear form of the equation has been obtained by the Hirota direct method. In addition, with the help of Wronskian technique and the Pfaffian properties, Wronskian and Grammian solutions have been generated. 展开更多
关键词 Generalized variable Coefficient (n + 1)-dimensional kp equation HIROTA Bilinear Method WRONSKIAN SOLUTION Grammian SOLUTION
下载PDF
Exotic Localized Coherent Structures of New (2+1)-Dimensional Soliton Equation 被引量:8
9
作者 ZHANG Jie-Fang HUANG Wen-Hua ZHENG Chun-Long 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第11期517-522,共6页
The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryf... The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partialdifferential equation. Applying the Backlund transformation and introducing the arbitraryfunctions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types ofsolutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functionsappropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the numberof the peaks. 展开更多
关键词 variable separation approach coherent structures NEW (2+1)-dimensional SOLITON equation
下载PDF
New periodic wave solutions, localized excitations and their interaction for (2+1)-dimensional Burgers equation 被引量:2
10
作者 马红彩 葛东杰 于耀东 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第12期4344-4353,共10页
Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a cl... Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+l)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution). 展开更多
关键词 2+1)-dimensional Burgers equation mutilinear variable separation approach periodicwave solutions localized excitation
下载PDF
Solutions of novel soliton molecules and their interactions of(2+1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation 被引量:1
11
作者 Hong-Cai Ma Yi-Dan Gao Ai-Ping Deng 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期77-83,共7页
The method of variable separation has always been regarded as a crucial method for solving nonlinear evolution equations.In this paper,we use a new form of variable separation to study novel soliton molecules and thei... The method of variable separation has always been regarded as a crucial method for solving nonlinear evolution equations.In this paper,we use a new form of variable separation to study novel soliton molecules and their interactions in(2+1)-dimensional potential Boiti–Leon-Manna–Pempinelli equation.Dromion molecules,ring molecules,lump molecules,multi-instantaneous molecules,and their interactions are obtained.Then we draw corresponding images with maple software to study their dynamic behavior. 展开更多
关键词 variable separation method Hirota bilinear method dromion solution (2+1)-dimensional potential Boiti–Leon–Manna–Pempinelli equation
下载PDF
Periodic Wave Solutions for(2+1)-Dimensional Boussinesq Equation and(3+1)-Dimensional Kadomtsev-Petviashvili Equation
12
作者 ZHANG Huan TIAN Bo +4 位作者 ZHANG Hai-Qiang GENG Tao MENG Xiang-Hua LIU Wen-Jun CAI Ke-Jie 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第11期1169-1176,共8页
For describing various complex nonlinear phenomena in the realistic world,the higher-dimensional nonlinearevolution equations appear more attractive in many fields of physical and engineering sciences.In this paper,by... For describing various complex nonlinear phenomena in the realistic world,the higher-dimensional nonlinearevolution equations appear more attractive in many fields of physical and engineering sciences.In this paper,by virtueof the Hirota bilinear method and Riemann theta functions,the periodic wave solutions for the(2+1)-dimensionalBoussinesq equation and(3+1)-dimensional Kadomtsev-Petviashvili(KP)equation are obtained.Furthermore,it isshown that the known soliton solutions for the two equations can be reduced from the periodic wave solutions. 展开更多
关键词 periodic wave solutions 2+1)-dimensional Boussinesq equation (3+1-dimensional kp equation Hirota bilinear method
下载PDF
New Periodic Wave Solutions and Their Interaction for (2+1)-dimensional KdV Equation
13
作者 GE Dong-jie MA Hong-cai YU Yao-dong 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第4期525-536,共12页
A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contain... A class of new doubly periodic wave solutions for (2+1)-dimensional KdV equation are obtained by introducing appropriate Jacobi elliptic functions and Weierstrass elliptic functions in the general solution(contains two arbitrary functions) got by means of multilinear variable separation approach for (2+1)-dimensional KdV equation. Limiting cases are considered and some localized excitations are derived, such as dromion, multidromions, dromion-antidromion, multidromions-antidromions, and so on. Some solutions of the dromion-antidromion and multidromions-antidromions are periodic in one direction but localized in the other direction. The interaction properties of these solutions, which are numerically studied, reveal that some of them are nonelastic and some are completely elastic. Furthermore, these results are visualized. 展开更多
关键词 2+1)-dimensional KdV equation multilinear variable separation approach elliptic functions periodic wave solutions localized excitations interaction property nonelastic completely elastic
下载PDF
Exotic Localized Coherent Structures of New(2+1)-Dimensional Soliton Equation 被引量:2
14
作者 ZHANGJie-Fang HUANGWen-Hua 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第5期517-522,共6页
The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary... The variable separation approach is used to obtain localized coherent structures of the new (2+1)-dimensional nonlinear partial differential equation. Applying the B?cklund transformation and introducing the arbitrary functions of the seed solutions, the abundance of the localized structures of this model are derived. Some special types of solutions solitoff, dromions, dromion lattice, breathers and instantons are discussed by selecting the arbitrary functions appropriately. The breathers may breath in their amplititudes, shapes, distances among the peaks and even the number of the peaks. 展开更多
关键词 variable separation approach coherent structures new (2+1)-dimensional soliton equation
下载PDF
Integrability and Solutions of the (2+1)-Dimensional Broer-Kaup Equation with Variable Coefficients 被引量:1
15
作者 王路华 贺劲松 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第9期387-392,共6页
The integrability of the (2+l)-dimensional Broer-Kaup equation with variable coefficients (VCBK) is verified by finding a transformation mapping it to the usual (2+l)-dimensional Broer-Kaup equation (BK). Th... The integrability of the (2+l)-dimensional Broer-Kaup equation with variable coefficients (VCBK) is verified by finding a transformation mapping it to the usual (2+l)-dimensional Broer-Kaup equation (BK). Thus the solutions of the (2+1)-dimensional VCBK are obtained by making full use of the known solutions of the usual (2+1)dimensional IRK. Two new integrable models are given by this transformation, their dromion-like solutions and rogue wave solutions are also obtained. Further, the velocity of the dromion-like solutions can be designed and the center of the rogue wave solutions can be controlled artificially because of the appearance of the four arbitrary functions in the transformation. 展开更多
关键词 2+l)-dimensional Broer Kaup equation with variable coefficients INTEGRABILITY 21)-dimen-sional Broer-Kaup equation dromion-like rogue wave
原文传递
Hyperelliptic Function Solutions of Three Genus for KP Equation Using Direct Method
16
作者 冯阳 丁琦 +1 位作者 董彦诚 张鸿庆 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第4期615-618,共4页
In this paper, we will use a simple and direct method to obtain some particular solutions of (2+1)- dimensional and (3+ 1)-dimensional KP equation expressed in terms of the Kleinian hyperelliptic functions for a... In this paper, we will use a simple and direct method to obtain some particular solutions of (2+1)- dimensional and (3+ 1)-dimensional KP equation expressed in terms of the Kleinian hyperelliptic functions for a given curve y^2 = f(x) whose genus is three. We observe that this method generalizes the auxiliary method, and can obtain the hyperelliptic functions solutions. 展开更多
关键词 hyperelliptic functions 2+1)-dimensional kp equation (3+1-dimensional kp equation
下载PDF
(2+1)维广义圆柱Kadomtsev-Petviashvilli方程精确解 被引量:4
17
作者 庞晶 靳玲花 《内蒙古工业大学学报(自然科学版)》 2011年第3期168-174,共7页
本文用新近提到的(G'/G)展开法首次尝试应用到变系数非线性发展方程中,并且以(2+1)维广义变系数KP方程为例,成功得到了精确解;然后又将该法进行新的改进,再一次对(2+1)维广变系数KP方程求解,获取了更多的解。通过许多算例验证,该展... 本文用新近提到的(G'/G)展开法首次尝试应用到变系数非线性发展方程中,并且以(2+1)维广义变系数KP方程为例,成功得到了精确解;然后又将该法进行新的改进,再一次对(2+1)维广变系数KP方程求解,获取了更多的解。通过许多算例验证,该展开法易于求解常系数非线性发展方程,而且对变系数非线性发展方程仍很实用、高效,具有广泛的应用前景。 展开更多
关键词 变系数非线性发展方程 精确解 (G'/G)展开法 (2+1)维广义圆柱kp方程
下载PDF
Interaction Between Line Soliton and Algebraic Soliton for Asymmetric Nizhnik-Novikov-Veselov Equation 被引量:1
18
作者 RUAN Hang-Yu LI Zhi-Fang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第6期1547-1552,共6页
Starting from the variable separation approach, the algebraic soliton solution and the solution describing the interaction between line soliton and algebraic soliton are obtained by selecting appropriate seed solution... Starting from the variable separation approach, the algebraic soliton solution and the solution describing the interaction between line soliton and algebraic soliton are obtained by selecting appropriate seed solution for (2+1)-dimensional ANNV equation. The behaviors of interactions are discussed in detail both analytically and graphically. It is shown that there are two kinds of singular interactions between line soliton and algebraic soliton: 1) the resonant interaction where the algebraic soliton propagates together with the line soliton and persists infinitely; 2) the extremely repulsive interaction where the algebraic soliton affects the motion of the line soliton infinitely apart. 展开更多
关键词 variable separation approach the interaction between line soliton and algebraic soliton 2+1)-dimensional ANNV equation
下载PDF
Resonant multiple wave solutions to some integrable soliton equations
19
作者 Jian-Gen Liu Xiao-Jun Yang Yi-Ying Feng 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第11期92-98,共7页
To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kad... To transform the exponential traveling wave solutions to bilinear differential equations, a sufficient and necessary condition is proposed. Motivated by the condition, we extend the results to the(2+1)-dimensional Kadomtsev–Petviashvili(KP) equation, the(3+1)-dimensional generalized Kadomtsev–Petviashvili(g-KP) equation, and the B-type Kadomtsev–Petviashvili(BKP) equation. Aa a result, we obtain some new resonant multiple wave solutions through the parameterization for wave numbers and frequencies via some linear combinations of exponential traveling waves. Finally, these new resonant type solutions can be displayed in graphs to illustrate the resonant behaviors of multiple wave solutions. 展开更多
关键词 linear superposition principle RESONANT MULTIPLE wave solutions (2+1)-dimensional Kadomtsev–Petviashvili(kp) equation (3+1)-dimensional g-kp and Bkp equations
下载PDF
Lie symmetry analysis and invariant solutions for(2+1) dimensional Bogoyavlensky-Konopelchenko equation with variable-coefficient in wave propagation
20
作者 Mohamed R.Ali Wen-Xiu Ma R.Sadat 《Journal of Ocean Engineering and Science》 SCIE 2022年第3期248-254,共7页
This work aims to present nonlinear models that arise in ocean engineering.There are many models of ocean waves that are present in nature.In shallow water,the linearization of the equations requires critical conditio... This work aims to present nonlinear models that arise in ocean engineering.There are many models of ocean waves that are present in nature.In shallow water,the linearization of the equations requires critical conditions on wave capacity than it make in deep water,and the strong nonlinear belongings are spotted.We use Lie symmetry analysis to obtain different types of soliton solutions like one,two,and three-soliton solutions in a(2+1)dimensional variable-coefficient Bogoyavlensky Konopelchenko(VCBK)equation that describes the interaction of a Riemann wave reproducing along the y-axis and a long wave reproducing along the x-axis in engineering and science.We use the Lie symmetry analysis then the integrating factor method to obtain new solutions of the VCBK equation.To demonstrate the physical meaning of the solutions obtained by the presented techniques,the graphical performance has been demonstrated with some values.The presented equation has fewer dimensions and is reduced to ordinary differential equations using the Lie symmetry technique. 展开更多
关键词 Symmetry approach SOLITONS Partial differential equations The variable coefficients(2+1)-dimensional Bogoyavlensky Konopelchenko equation Nonlinear evolution equations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部