The catalytic hydrolysis of dichlorodifluoromethane (CFC-12) was investigated over solid acid Ti(SO_4)_2. The catalytic activity decreased with the calcination temperature. When space velocity was 6 1 h^(-1) g-cat^(-1...The catalytic hydrolysis of dichlorodifluoromethane (CFC-12) was investigated over solid acid Ti(SO_4)_2. The catalytic activity decreased with the calcination temperature. When space velocity was 6 1 h^(-1) g-cat^(-1). the CPC-12 conversion at 310C over Ti(SO_4)_2 calcined at 350C remained about 98.5% during 360 h on stream. and the selectivity to by-products remained zero. The findings enlarged the scope of traditional catalyst systems for the CFCs decomposition.展开更多
Highly active solid superacid catalysts for n-butane isomerization, SZ/A1_2O_3-P, were prepared by supporting SO-(4-2)/ZrO2, (SZ) on y-A1_2O_3 carrier using a precipitation method. The activities of some catalysts wer...Highly active solid superacid catalysts for n-butane isomerization, SZ/A1_2O_3-P, were prepared by supporting SO-(4-2)/ZrO2, (SZ) on y-A1_2O_3 carrier using a precipitation method. The activities of some catalysts were enhanced significantly j The activity of the most active sample. 60%SZ/Al_2O3-P, was even about 2 times more active than that of the SZ catalyst.展开更多
文摘The catalytic hydrolysis of dichlorodifluoromethane (CFC-12) was investigated over solid acid Ti(SO_4)_2. The catalytic activity decreased with the calcination temperature. When space velocity was 6 1 h^(-1) g-cat^(-1). the CPC-12 conversion at 310C over Ti(SO_4)_2 calcined at 350C remained about 98.5% during 360 h on stream. and the selectivity to by-products remained zero. The findings enlarged the scope of traditional catalyst systems for the CFCs decomposition.
文摘Highly active solid superacid catalysts for n-butane isomerization, SZ/A1_2O_3-P, were prepared by supporting SO-(4-2)/ZrO2, (SZ) on y-A1_2O_3 carrier using a precipitation method. The activities of some catalysts were enhanced significantly j The activity of the most active sample. 60%SZ/Al_2O3-P, was even about 2 times more active than that of the SZ catalyst.