To predict complex reservoir spaces(with developed caves,pores,and fractures),based on the results of full-azimuth depth migration processing,we adopted reverse weighted nonlinear inversion to improve the accuracy of ...To predict complex reservoir spaces(with developed caves,pores,and fractures),based on the results of full-azimuth depth migration processing,we adopted reverse weighted nonlinear inversion to improve the accuracy of porous reservoir prediction.Scattering imaging three-parameter wavelet transform technology was used to accurately predict small-scale cave bodies.The joint inversion method of velocity and amplitude anisotropy was developed to improve the accuracy of small and medium-sized fracture prediction.The results of multiscale fracture modeling and characterization,interwell connectivity analysis,and connection path prediction are consistent with the production condition.Finally,based on the above prediction findings,favorable reservoir development areas were predicted.The above ideas and strategies have great application value for the efficient exploration and development of complex storage space reservoirs and the optimization of high-yield well locations.展开更多
The Three Gorges Reservoir Area(TGRA)is an important ecological barrier in the Yangtze River Basin,China.Therefore,it is of great importance to understand the spatio-temporal variation and the driving factors of produ...The Three Gorges Reservoir Area(TGRA)is an important ecological barrier in the Yangtze River Basin,China.Therefore,it is of great importance to understand the spatio-temporal variation and the driving factors of production-living-ecological spaces for sustainable and high-quality development in the TGRA.This study investigated the dynamic variation of production-living-ecological spaces in the TGRA by employing land use data in 2000,2005,2010,2015,and 2018,and detected the influencing factors by using the Geographic detector(GeoDetector).Results implied that the structure and dynamic trajectories of production-living-ecological spaces in the TGRA varied in both horizontal and vertical directions,and the study area was dominated by ecological space.A spatial orientation towards the northeast was detected in the evolution of production-living-ecological spaces during 2000-2018.In terms of quantity,the transition from ecological space(grassland and woodland)to agriculture land accounted for the largest proportion from 2000 to 2018.However,the reverse transition from agriculture land to ecological space has increased since 2000 with the efforts of“Grain for Green”.In terms of temporal scale,there was a fluctuating trend in production space with the continuous expansion of living space,while ecological space showed an inverted U-shaped trend during 2000-2018.The dynamic pattern of production-living-ecological spaces in the TGRA was influenced by both physical and socio-economic variables as basic determinants and dominant driving factors,respectively.Finally,the harmonization and protection of production-living-ecological spaces still require policy-makers’efforts.This work may have potential in advancing our understanding about land use conflicts,and provide a reference for rational layout of spatial functions and the realization of sustainable development in the TGRA.展开更多
目的:对比三维多回波恢复梯度回波(3D MERGE)、三维可变反转角快速自旋回波(3D SPACE STIR)序列在腰椎间盘突出症(LDH)检查中的应用效果。方法:选择2020年1月~2022年11月收治的135例LDH患者,回顾性分析患者临床和磁共振成像(MRI)资料,...目的:对比三维多回波恢复梯度回波(3D MERGE)、三维可变反转角快速自旋回波(3D SPACE STIR)序列在腰椎间盘突出症(LDH)检查中的应用效果。方法:选择2020年1月~2022年11月收治的135例LDH患者,回顾性分析患者临床和磁共振成像(MRI)资料,所有患者均接受常规MRI扫描及3D MERGE、3D SPACE STIR序列扫描,对比3D MERGE、3D SPACE STIR序列测量神经根直径的一致性,评价两种序列的图像质量参数[信噪比(SNR)、对比噪声比(CNR)]、图像清晰度评分。结果:3D MERGE和3D SPACE STIR序列测量的L3~S1神经根直径比较差异无统计学意义(P>0.05),且两组序列测量的L3、L4、L5和S1直径均显示出较高相关性(r=0.957,0.986,0.975,0.972,P<0.05);3D MERGE序列的SNR及CNR均高于3D SPACE STIR序列,神经根显示分级、图像清晰度评分优于3D SPACE STIR序列,差异有统计学意义(P<0.05)。结论:3D MERGE、3D SPACE STIR序列在LDH神经根直径测量中具有极高一致性,3D MERGE序列较3D SPACE STIR序列能够更清晰显示神经跟的解剖形态,图像质量更好。展开更多
螺旋藻(Spirulina)藻蓝蛋白具有独特的理化特性及生理功能,是药物、食品和化妆品的天然原料,具有较大的开发潜力。为探讨螺旋藻藻蓝蛋白的研究现状与发展前景,对中国知网和Web of Science数据库中1990—2023年发表的文献进行检索并筛选...螺旋藻(Spirulina)藻蓝蛋白具有独特的理化特性及生理功能,是药物、食品和化妆品的天然原料,具有较大的开发潜力。为探讨螺旋藻藻蓝蛋白的研究现状与发展前景,对中国知网和Web of Science数据库中1990—2023年发表的文献进行检索并筛选,使用Cite Space软件对文章发文量、研究团队及研究热点进行图谱分析。综合分析可知,国内年发文量偏少,呈平稳趋势;国外年发文量持续上升,尤其近几年发文量迅速增长,且发文量超过了100篇;国外研究热点集中于藻蓝蛋白在食品、医药行业的应用方面,而国内研究热点集中在提取纯化、稳定性、功能活性的研究与应用,下一步应结合研究现状开发适合规模化生产的提取纯化工艺,进一步加强藻蓝蛋白研究的广度与深度;国内外研究群体主要是高校的相关生物技术学院或研究机构等,总体来讲,学者间存在较为密切的合作,但研究机构间尚未形成紧密的合作关系,在地域上比较分散,各大高校和研究机构应突破地区或机构间的各种限制,促进该研究领域的深度融合和快速发展,深入挖掘藻蓝蛋白在各个领域的潜在应用。展开更多
为了解国内外近10年护理不良事件的研究热点与前沿,为医院管理和临床护士提供参考,保障患者安全,通过检索中国期刊全文数据库(CNKI)和Web of Science(WOS)数据库,检索时限为2012年1月—2022年8月,导入CiteSpace进行可视化分析。研究显示...为了解国内外近10年护理不良事件的研究热点与前沿,为医院管理和临床护士提供参考,保障患者安全,通过检索中国期刊全文数据库(CNKI)和Web of Science(WOS)数据库,检索时限为2012年1月—2022年8月,导入CiteSpace进行可视化分析。研究显示,从发文量看,国内外学者对护理不良事件的关注度整体较高,可视化分析结果并未发现作者之间、机构之间的联系。未来减少护理不良事件的方法一定会越来越紧贴科学技术,越来越多的新型信息化平台、App等会用于医疗行业,降低护理不良事件预防的难度,但护理人员仍要重视护理安全。展开更多
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u...Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage.展开更多
Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation ...Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.展开更多
目的梳理国内多发伤急救相关研究文献,分析研究现状、热点和趋势,为我国多发伤急救研究提供借鉴和指导。方法检索中国知网数据库中2011—2021年关于多发伤急救的相关文献,使用Cite Space 6.1.R3可视化软件对该领域的年发文量、机构、作...目的梳理国内多发伤急救相关研究文献,分析研究现状、热点和趋势,为我国多发伤急救研究提供借鉴和指导。方法检索中国知网数据库中2011—2021年关于多发伤急救的相关文献,使用Cite Space 6.1.R3可视化软件对该领域的年发文量、机构、作者、关键词进行分析。结果最终纳入多发伤急救研究文献2519篇,整体发文数量较平稳,以2016年为小高峰;发文量最高的机构是华中科技大学附属同济医院。多发伤急救研究热点包括院前急救、并发症护理、风险因素分析和预后效果评估,研究前沿包括不同多发伤人群的诊断、治疗、手术和护理体会等方面。结论本文通过可视化分析国内多发伤急救研究的热点及趋势,指明了多发伤目前研究存在的问题和未来研究发展的方向,为进一步完善多发伤急救卫生服务和管理体系提供指导。展开更多
Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in t...Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in the seismic data,which is a time-intensive task.Many researchers have utilized a robust Grey-level co-occurrence matrix(GLCM)-based texture attributes to map reservoir heterogeneity.However,these attributes take seismic data as input and might not be sensitive to lateral lithology variation.To incorporate the lithology information,we have developed an innovative impedance-based texture approach using GLCM workflow by integrating 3D acoustic impedance volume(a rock propertybased attribute)obtained from a deep convolution network-based impedance inversion.Our proposed workflow is anticipated to be more sensitive toward mapping lateral changes than the conventional amplitude-based texture approach,wherein seismic data is used as input.To evaluate the improvement,we applied the proposed workflow to the full-stack 3D seismic data from the Poseidon field,NW-shelf,Australia.This study demonstrates that a better demarcation of reservoir gas sands with improved lateral continuity is achievable with the presented approach compared to the conventional approach.In addition,we assess the implication of multi-stage faulting on facies distribution for effective reservoir characterization.This study also suggests a well-bounded potential reservoir facies distribution along the parallel fault lines.Thus,the proposed approach provides an efficient strategy by integrating the impedance information with texture attributes to improve the inference on reservoir heterogeneity,which can serve as a promising tool for identifying potential reservoir zones for both production benefits and fluid storage.展开更多
Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate model...Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate models(GCMs) are subject to considerable uncertainties, largely caused by their coarse resolution. This study applies a triple-nested WRF(Weather Research and Forecasting) model dynamical downscaling, driven by a GCM, MIROC6(Model for Interdisciplinary Research on Climate, version 6), to improve the historical simulation and reduce the uncertainties in the future projection of CREs in the TGR. Results indicate that WRF has better performances in reproducing the observed rainfall in terms of the daily probability distribution, monthly evolution and duration of rainfall events, demonstrating the ability of WRF in simulating CREs. Thus, the triple-nested WRF is applied to project the future changes of CREs under the middle-of-the-road and fossil-fueled development scenarios. It is indicated that light and moderate rainfall and the duration of continuous rainfall spells will decrease in the TGR, leading to a decrease in the frequency of CREs. Meanwhile, the duration, rainfall amount, and intensity of CREs is projected to regional increase in the central-west TGR. These results are inconsistent with the raw projection of MIROC6. Observational diagnosis implies that CREs are mainly contributed by the vertical moisture advection. Such a synoptic contribution is captured well by WRF, which is not the case in MIROC6,indicating larger uncertainties in the CREs projected by MIROC6.展开更多
高质量教师是高质量教育发展的中坚力量。教师信念作为教师专业素养构成的关键要素,对促进教师专业发展、提升教师质量具有重要作用与影响。为借鉴国际体育教师信念研究的成果与经验,促进国内对体育教师信念的研究,研究利用CiteSpace软...高质量教师是高质量教育发展的中坚力量。教师信念作为教师专业素养构成的关键要素,对促进教师专业发展、提升教师质量具有重要作用与影响。为借鉴国际体育教师信念研究的成果与经验,促进国内对体育教师信念的研究,研究利用CiteSpace软件,对Web of Science核心合集数据库中1960—2022年的英文文献进行可视化研究。发现:体育教师信念研究高潮出现于2021年,载文数量最多的期刊是Journal of Teaching in Physical Education;研究中心度最高的国家是美国,核心圈层的代表学者是Richards KAR、Kulinna PH和Curtner-smith MD等人;研究热点趋势集中于体力活动促进、职业社会化、批判性教学法、职前体育教师、专业发展等方面。启示:国内未来研究应重点关注体育教师信念对课程改革的影响以及促进职前、职后阶段体育教师信念的发展。展开更多
文摘To predict complex reservoir spaces(with developed caves,pores,and fractures),based on the results of full-azimuth depth migration processing,we adopted reverse weighted nonlinear inversion to improve the accuracy of porous reservoir prediction.Scattering imaging three-parameter wavelet transform technology was used to accurately predict small-scale cave bodies.The joint inversion method of velocity and amplitude anisotropy was developed to improve the accuracy of small and medium-sized fracture prediction.The results of multiscale fracture modeling and characterization,interwell connectivity analysis,and connection path prediction are consistent with the production condition.Finally,based on the above prediction findings,favorable reservoir development areas were predicted.The above ideas and strategies have great application value for the efficient exploration and development of complex storage space reservoirs and the optimization of high-yield well locations.
基金the National Natural Science Foundation of China(41971215,42371205)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2022317).
文摘The Three Gorges Reservoir Area(TGRA)is an important ecological barrier in the Yangtze River Basin,China.Therefore,it is of great importance to understand the spatio-temporal variation and the driving factors of production-living-ecological spaces for sustainable and high-quality development in the TGRA.This study investigated the dynamic variation of production-living-ecological spaces in the TGRA by employing land use data in 2000,2005,2010,2015,and 2018,and detected the influencing factors by using the Geographic detector(GeoDetector).Results implied that the structure and dynamic trajectories of production-living-ecological spaces in the TGRA varied in both horizontal and vertical directions,and the study area was dominated by ecological space.A spatial orientation towards the northeast was detected in the evolution of production-living-ecological spaces during 2000-2018.In terms of quantity,the transition from ecological space(grassland and woodland)to agriculture land accounted for the largest proportion from 2000 to 2018.However,the reverse transition from agriculture land to ecological space has increased since 2000 with the efforts of“Grain for Green”.In terms of temporal scale,there was a fluctuating trend in production space with the continuous expansion of living space,while ecological space showed an inverted U-shaped trend during 2000-2018.The dynamic pattern of production-living-ecological spaces in the TGRA was influenced by both physical and socio-economic variables as basic determinants and dominant driving factors,respectively.Finally,the harmonization and protection of production-living-ecological spaces still require policy-makers’efforts.This work may have potential in advancing our understanding about land use conflicts,and provide a reference for rational layout of spatial functions and the realization of sustainable development in the TGRA.
文摘目的:对比三维多回波恢复梯度回波(3D MERGE)、三维可变反转角快速自旋回波(3D SPACE STIR)序列在腰椎间盘突出症(LDH)检查中的应用效果。方法:选择2020年1月~2022年11月收治的135例LDH患者,回顾性分析患者临床和磁共振成像(MRI)资料,所有患者均接受常规MRI扫描及3D MERGE、3D SPACE STIR序列扫描,对比3D MERGE、3D SPACE STIR序列测量神经根直径的一致性,评价两种序列的图像质量参数[信噪比(SNR)、对比噪声比(CNR)]、图像清晰度评分。结果:3D MERGE和3D SPACE STIR序列测量的L3~S1神经根直径比较差异无统计学意义(P>0.05),且两组序列测量的L3、L4、L5和S1直径均显示出较高相关性(r=0.957,0.986,0.975,0.972,P<0.05);3D MERGE序列的SNR及CNR均高于3D SPACE STIR序列,神经根显示分级、图像清晰度评分优于3D SPACE STIR序列,差异有统计学意义(P<0.05)。结论:3D MERGE、3D SPACE STIR序列在LDH神经根直径测量中具有极高一致性,3D MERGE序列较3D SPACE STIR序列能够更清晰显示神经跟的解剖形态,图像质量更好。
文摘螺旋藻(Spirulina)藻蓝蛋白具有独特的理化特性及生理功能,是药物、食品和化妆品的天然原料,具有较大的开发潜力。为探讨螺旋藻藻蓝蛋白的研究现状与发展前景,对中国知网和Web of Science数据库中1990—2023年发表的文献进行检索并筛选,使用Cite Space软件对文章发文量、研究团队及研究热点进行图谱分析。综合分析可知,国内年发文量偏少,呈平稳趋势;国外年发文量持续上升,尤其近几年发文量迅速增长,且发文量超过了100篇;国外研究热点集中于藻蓝蛋白在食品、医药行业的应用方面,而国内研究热点集中在提取纯化、稳定性、功能活性的研究与应用,下一步应结合研究现状开发适合规模化生产的提取纯化工艺,进一步加强藻蓝蛋白研究的广度与深度;国内外研究群体主要是高校的相关生物技术学院或研究机构等,总体来讲,学者间存在较为密切的合作,但研究机构间尚未形成紧密的合作关系,在地域上比较分散,各大高校和研究机构应突破地区或机构间的各种限制,促进该研究领域的深度融合和快速发展,深入挖掘藻蓝蛋白在各个领域的潜在应用。
文摘为了解国内外近10年护理不良事件的研究热点与前沿,为医院管理和临床护士提供参考,保障患者安全,通过检索中国期刊全文数据库(CNKI)和Web of Science(WOS)数据库,检索时限为2012年1月—2022年8月,导入CiteSpace进行可视化分析。研究显示,从发文量看,国内外学者对护理不良事件的关注度整体较高,可视化分析结果并未发现作者之间、机构之间的联系。未来减少护理不良事件的方法一定会越来越紧贴科学技术,越来越多的新型信息化平台、App等会用于医疗行业,降低护理不良事件预防的难度,但护理人员仍要重视护理安全。
基金Dao-Bing Wang was supported by the Beijing Natural Science Foundation Project(No.3222030)the National Natural Science Foundation of China(No.52274002)+1 种基金the PetroChina Science and Technology Innovation Foundation Project(No.2021DQ02-0201)Fu-Jian Zhou was supported by the National Natural Science Foundation of China(No.52174045).
文摘Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage.
文摘Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow.
文摘目的梳理国内多发伤急救相关研究文献,分析研究现状、热点和趋势,为我国多发伤急救研究提供借鉴和指导。方法检索中国知网数据库中2011—2021年关于多发伤急救的相关文献,使用Cite Space 6.1.R3可视化软件对该领域的年发文量、机构、作者、关键词进行分析。结果最终纳入多发伤急救研究文献2519篇,整体发文数量较平稳,以2016年为小高峰;发文量最高的机构是华中科技大学附属同济医院。多发伤急救研究热点包括院前急救、并发症护理、风险因素分析和预后效果评估,研究前沿包括不同多发伤人群的诊断、治疗、手术和护理体会等方面。结论本文通过可视化分析国内多发伤急救研究的热点及趋势,指明了多发伤目前研究存在的问题和未来研究发展的方向,为进一步完善多发伤急救卫生服务和管理体系提供指导。
文摘Reservoir heterogeneities play a crucial role in governing reservoir performance and management.Traditionally,detailed and inter-well heterogeneity analyses are commonly performed by mapping seismic facies change in the seismic data,which is a time-intensive task.Many researchers have utilized a robust Grey-level co-occurrence matrix(GLCM)-based texture attributes to map reservoir heterogeneity.However,these attributes take seismic data as input and might not be sensitive to lateral lithology variation.To incorporate the lithology information,we have developed an innovative impedance-based texture approach using GLCM workflow by integrating 3D acoustic impedance volume(a rock propertybased attribute)obtained from a deep convolution network-based impedance inversion.Our proposed workflow is anticipated to be more sensitive toward mapping lateral changes than the conventional amplitude-based texture approach,wherein seismic data is used as input.To evaluate the improvement,we applied the proposed workflow to the full-stack 3D seismic data from the Poseidon field,NW-shelf,Australia.This study demonstrates that a better demarcation of reservoir gas sands with improved lateral continuity is achievable with the presented approach compared to the conventional approach.In addition,we assess the implication of multi-stage faulting on facies distribution for effective reservoir characterization.This study also suggests a well-bounded potential reservoir facies distribution along the parallel fault lines.Thus,the proposed approach provides an efficient strategy by integrating the impedance information with texture attributes to improve the inference on reservoir heterogeneity,which can serve as a promising tool for identifying potential reservoir zones for both production benefits and fluid storage.
基金funding from the NFR COMBINED (Grant No.328935)The BCPU hosted YZ visit to University of Bergen (Trond Mohn Foundation Grant No.BFS2018TMT01)+2 种基金supported by the National Key Research and Development Program of China (Grant No.2023YFA0805101)the National Natural Science Foundation of China (Grant Nos.42376250 and 41731177)a China Scholarship Council fellowship and the UTFORSK Partnership Program (CONNECTED UTF-2016-long-term/10030)。
文摘Spring consecutive rainfall events(CREs) are key triggers of geological hazards in the Three Gorges Reservoir area(TGR), China. However, previous projections of CREs based on the direct outputs of global climate models(GCMs) are subject to considerable uncertainties, largely caused by their coarse resolution. This study applies a triple-nested WRF(Weather Research and Forecasting) model dynamical downscaling, driven by a GCM, MIROC6(Model for Interdisciplinary Research on Climate, version 6), to improve the historical simulation and reduce the uncertainties in the future projection of CREs in the TGR. Results indicate that WRF has better performances in reproducing the observed rainfall in terms of the daily probability distribution, monthly evolution and duration of rainfall events, demonstrating the ability of WRF in simulating CREs. Thus, the triple-nested WRF is applied to project the future changes of CREs under the middle-of-the-road and fossil-fueled development scenarios. It is indicated that light and moderate rainfall and the duration of continuous rainfall spells will decrease in the TGR, leading to a decrease in the frequency of CREs. Meanwhile, the duration, rainfall amount, and intensity of CREs is projected to regional increase in the central-west TGR. These results are inconsistent with the raw projection of MIROC6. Observational diagnosis implies that CREs are mainly contributed by the vertical moisture advection. Such a synoptic contribution is captured well by WRF, which is not the case in MIROC6,indicating larger uncertainties in the CREs projected by MIROC6.
文摘高质量教师是高质量教育发展的中坚力量。教师信念作为教师专业素养构成的关键要素,对促进教师专业发展、提升教师质量具有重要作用与影响。为借鉴国际体育教师信念研究的成果与经验,促进国内对体育教师信念的研究,研究利用CiteSpace软件,对Web of Science核心合集数据库中1960—2022年的英文文献进行可视化研究。发现:体育教师信念研究高潮出现于2021年,载文数量最多的期刊是Journal of Teaching in Physical Education;研究中心度最高的国家是美国,核心圈层的代表学者是Richards KAR、Kulinna PH和Curtner-smith MD等人;研究热点趋势集中于体力活动促进、职业社会化、批判性教学法、职前体育教师、专业发展等方面。启示:国内未来研究应重点关注体育教师信念对课程改革的影响以及促进职前、职后阶段体育教师信念的发展。